Space exploration fosters great strides in research and provides innovative solutions that contribute to advancements in different fields. The discipline of space architecture represents the connecting point where space exploration and architecture meet. It pushes the boundaries of architecture and grants the possibility to develop new strategies and design methods in this field. Designing a resilient and sustainable infrastructure for human missions on Mars is a new challenge that requires new conceptual design approaches. Architecture in Space relies on some fundamental pillars that are intrinsically interconnected: space sciences, engineering, robotics, industrial design, ergonomics, medicine, psychology, and last but not least, art. The extreme environmental conditions are a major technological challenge but also an opportunity to explore new construction techniques using alternative materials, enabling architecture to update its traditional methods. In this paper, we designed a habitat on Mars, E.L.L.E., an Extreme Livable Lightweight Environment, for six astronauts and a mission of 600 days within a cross-disciplinary environment at different scales, from architecture to interior design. This challenges both space and terrestrial architectures to consider the relationships between human activities and the resources that support them. The E.L.L.E. habitat solution will be built with lightweight materials as they are particularly suitable for space exploration purposes. A computational design approach was applied to perform multi-objective optimization and form-finding analysis to support the decision-making process for E.L.L.E., identifying the optimal design configuration among several optimized solutions that maximize compactness, floor area, internal layout effectiveness, and structural integrity. This process could easily be applied to several future Mars habitats and settlements.

Computational Design of an Extreme Livable Lightweight Environment on Mars / Rossi, Marta; Sumini, Valentina; Zanelli, Alessandra; Viscuso, Salvatore. - In: JOURNAL OF ARCHITECTURAL ENGINEERING. - ISSN 1076-0431. - ELETTRONICO. - 30:2(2024), pp. 1-10. [10.1061/JAEIED.AEENG-1632]

Computational Design of an Extreme Livable Lightweight Environment on Mars

Marta Rossi;Valentina Sumini;
2024

Abstract

Space exploration fosters great strides in research and provides innovative solutions that contribute to advancements in different fields. The discipline of space architecture represents the connecting point where space exploration and architecture meet. It pushes the boundaries of architecture and grants the possibility to develop new strategies and design methods in this field. Designing a resilient and sustainable infrastructure for human missions on Mars is a new challenge that requires new conceptual design approaches. Architecture in Space relies on some fundamental pillars that are intrinsically interconnected: space sciences, engineering, robotics, industrial design, ergonomics, medicine, psychology, and last but not least, art. The extreme environmental conditions are a major technological challenge but also an opportunity to explore new construction techniques using alternative materials, enabling architecture to update its traditional methods. In this paper, we designed a habitat on Mars, E.L.L.E., an Extreme Livable Lightweight Environment, for six astronauts and a mission of 600 days within a cross-disciplinary environment at different scales, from architecture to interior design. This challenges both space and terrestrial architectures to consider the relationships between human activities and the resources that support them. The E.L.L.E. habitat solution will be built with lightweight materials as they are particularly suitable for space exploration purposes. A computational design approach was applied to perform multi-objective optimization and form-finding analysis to support the decision-making process for E.L.L.E., identifying the optimal design configuration among several optimized solutions that maximize compactness, floor area, internal layout effectiveness, and structural integrity. This process could easily be applied to several future Mars habitats and settlements.
File in questo prodotto:
File Dimensione Formato  
Computational Design of an Extreme Livable Lightweight Environment on Mars.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.88 MB
Formato Adobe PDF
1.88 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2986893