Optical spectroscopy and imaging diagnostics in next-step fusion devices will rely on metallic mirrors. The performance of mirrors is studied in present-day tokamaks and in laboratory systems. This work deals with comprehensive tests of mirrors: (a) exposed in JET with the ITER-like wall (JET-ILW); (b) irradiated by hydrogen, helium and heavy ions to simulate transmutation effects and damage which may be induced by neutrons under reactor conditions. The emphasis has been on surface modification: deposited layers on JET mirrors from the divertor and on near-surface damage in ion-irradiated targets. Analyses performed with ion beams, microscopy and spectro-photometry techniques have revealed: (i) the formation of multiple co-deposited layers; (ii) flaking-off of the layers already in the tokamak, despite the small thickness (130-200 nm) of the granular deposits; (iii) deposition of dust particles (0.2-5 mu m, 300-400 mm(-2)) composed mainly of tungsten and nickel; (iv) that the stepwise irradiation of up to 30 dpa by heavy ions (Mo, Zr or Nb) caused only small changes in the optical performance, in some cases even improving reflectivity due to the removal of the surface oxide layer; (v) significant reflectivity degradation related to bubble formation caused by the irradiation with He and H ions.
Metallic mirrors for plasma diagnosis in current and future reactors: tests for ITER and DEMO / Rubel, M; Moon, Soonwoo; Petersson, P; Garcia-Carrasco, A; Hallén, A; Krawczynska, A; Fortuna-Zaleśna, E; Gilbert, M; Płociński, T; Widdowson, A; Subba, F. - In: PHYSICA SCRIPTA. - ISSN 0031-8949. - T170:T170(2017). [10.1088/1402-4896/aa8e27]
Metallic mirrors for plasma diagnosis in current and future reactors: tests for ITER and DEMO
Subba, F
2017
Abstract
Optical spectroscopy and imaging diagnostics in next-step fusion devices will rely on metallic mirrors. The performance of mirrors is studied in present-day tokamaks and in laboratory systems. This work deals with comprehensive tests of mirrors: (a) exposed in JET with the ITER-like wall (JET-ILW); (b) irradiated by hydrogen, helium and heavy ions to simulate transmutation effects and damage which may be induced by neutrons under reactor conditions. The emphasis has been on surface modification: deposited layers on JET mirrors from the divertor and on near-surface damage in ion-irradiated targets. Analyses performed with ion beams, microscopy and spectro-photometry techniques have revealed: (i) the formation of multiple co-deposited layers; (ii) flaking-off of the layers already in the tokamak, despite the small thickness (130-200 nm) of the granular deposits; (iii) deposition of dust particles (0.2-5 mu m, 300-400 mm(-2)) composed mainly of tungsten and nickel; (iv) that the stepwise irradiation of up to 30 dpa by heavy ions (Mo, Zr or Nb) caused only small changes in the optical performance, in some cases even improving reflectivity due to the removal of the surface oxide layer; (v) significant reflectivity degradation related to bubble formation caused by the irradiation with He and H ions.File | Dimensione | Formato | |
---|---|---|---|
54768_pfmc-16-rubel-mirrors-paper-3.pdf
accesso aperto
Tipologia:
1. Preprint / submitted version [pre- review]
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
1.27 MB
Formato
Adobe PDF
|
1.27 MB | Adobe PDF | Visualizza/Apri |
Rubel_2017_Phys._Scr._2017_014061.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
2.28 MB
Formato
Adobe PDF
|
2.28 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2986865