Tritium accumulation in fusion reactor materials is considered a serious radiological issue, therefore a lot of effort has been concentrated on the development of radiometric techniques. A novel method, based on gradual dissolution, for the determination of the total tritium content and its depth profiles in metallic samples is demonstrated. This method allows for the measurement of tritium in metallic samples after their exposure to a hydrogen and tritium mixture, tritium containing plasma or after irradiation with neutrons resulting in tritium formation. In this method, successive layers of metal are removed using an appropriate etching agent in the controlled regime and the amount of evolved gases are measured by means of chromatography (gas composition and release rate) and a proportional gas flow detector (tritium). Results for the tritium profiles in neutron irradiated, plasma exposed and gas loaded beryllium are reported.
Novel method for determination of tritium depth profiles in metallic samples / Pajuste, Elina; Kizane, Gunta; Avotina, Liga; Teimane, Anete Stine; Lescinskis, Andris; Vonda, Karlis; Subba, F.. - In: NUCLEAR FUSION. - ISSN 0029-5515. - 59:10(2019). [10.1088/1741-4326/ab3056]
Novel method for determination of tritium depth profiles in metallic samples
Subba, F.
2019
Abstract
Tritium accumulation in fusion reactor materials is considered a serious radiological issue, therefore a lot of effort has been concentrated on the development of radiometric techniques. A novel method, based on gradual dissolution, for the determination of the total tritium content and its depth profiles in metallic samples is demonstrated. This method allows for the measurement of tritium in metallic samples after their exposure to a hydrogen and tritium mixture, tritium containing plasma or after irradiation with neutrons resulting in tritium formation. In this method, successive layers of metal are removed using an appropriate etching agent in the controlled regime and the amount of evolved gases are measured by means of chromatography (gas composition and release rate) and a proportional gas flow detector (tritium). Results for the tritium profiles in neutron irradiated, plasma exposed and gas loaded beryllium are reported.File | Dimensione | Formato | |
---|---|---|---|
69332_nf_manuscript_pajuste_after_reviewpb.pdf
accesso aperto
Tipologia:
1. Preprint / submitted version [pre- review]
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
1.23 MB
Formato
Adobe PDF
|
1.23 MB | Adobe PDF | Visualizza/Apri |
Pajuste_2019_Nucl._Fusion_59_106006.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
761.17 kB
Formato
Adobe PDF
|
761.17 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2986809