The MHD response and the penetration of a deuterium shattered pellet into a JET plasma is investigated via the non-linear reduced MHD code JOREK with the neutral gas shielding (NGS) ablation model. The dominant MHD destabilizing mechanism by the injection is identified as the local helical cooling at each rational surface, as opposed to the global current profile contraction. Thus the injected fragments destabilize each rational surface as they pass through them. The injection penetration is found to be much better compared to MGI, with the convective transport caused by core MHD instabilities (e.g. 1/1 kink) contributing significantly to the core penetration. Moreover, the injection with realistic JET SPI system configurations is simulated in order to provide some insights into future operations, and the impact on the total assimilation and penetration depth of varying injection parameters such as the injection velocity or fineness of shattering is assessed. Further, the effect of changing the target equilibrium temperature or q profile on the assimilation and penetration is also investigated. Such analysis will form the basis of further investigation into a desirable configuration for the future SPI system in ITER.
3D non-linear MHD simulation of the MHD response and density increase as a result of shattered pellet injection / Hu, D.; Nardon, E.; Lehnen, M.; Huijsmans, G. T. A.; van Vugt, D. C.; Subba, F.. - In: NUCLEAR FUSION. - ISSN 0029-5515. - 58:12(2018). [10.1088/1741-4326/aae614]
3D non-linear MHD simulation of the MHD response and density increase as a result of shattered pellet injection
Subba, F.
2018
Abstract
The MHD response and the penetration of a deuterium shattered pellet into a JET plasma is investigated via the non-linear reduced MHD code JOREK with the neutral gas shielding (NGS) ablation model. The dominant MHD destabilizing mechanism by the injection is identified as the local helical cooling at each rational surface, as opposed to the global current profile contraction. Thus the injected fragments destabilize each rational surface as they pass through them. The injection penetration is found to be much better compared to MGI, with the convective transport caused by core MHD instabilities (e.g. 1/1 kink) contributing significantly to the core penetration. Moreover, the injection with realistic JET SPI system configurations is simulated in order to provide some insights into future operations, and the impact on the total assimilation and penetration depth of varying injection parameters such as the injection velocity or fineness of shattering is assessed. Further, the effect of changing the target equilibrium temperature or q profile on the assimilation and penetration is also investigated. Such analysis will form the basis of further investigation into a desirable configuration for the future SPI system in ITER.File | Dimensione | Formato | |
---|---|---|---|
61913_manuscript_v1.4.pdf
accesso aperto
Tipologia:
1. Preprint / submitted version [pre- review]
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
8.6 MB
Formato
Adobe PDF
|
8.6 MB | Adobe PDF | Visualizza/Apri |
Hu_2018_Nucl._Fusion_58_126025.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
6.11 MB
Formato
Adobe PDF
|
6.11 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2986754