The experimental method developed at ASDEX Upgrade for the determination of the intrinsic tungsten (W) density profile coupling data from the soft X-ray (SXR) diagnostic and vacuum-ultra-violet (VUV) spectroscopy has been upgraded for application to JET plasmas. The strong poloidal asymmetries in the SXR emission are modeled assuming a ln(epsilon(rho, R)/epsilon(rho, R-0)) = lambda(rho)(R-2 - R-0(2)) distribution, where rho is the flux coordinate, R is the major radius, and lambda is the fit parameter. The W density is calculated from the resulting 2D SXR emissivity maps accounting for contributions from a low-Z impurity (typically beryllium) and main ion with the assumption that their contributions are poloidally symmetric. Comparing the result with the independent W concentration measurement of VUV spectroscopy, a recalibration factor for the SXR emissivity is calculated making the method robust against the decrease in the sensitivity of the SXR diodes which has been observed across multiple campaigns. The final 2D W density map is checked for consistency versus the time-evolution of the W concentration measurement from VUV spectroscopy, toroidal rotation measurements from charge exchange recombination spectroscopy, and tomographic reconstructions of bolometry data. The method has been found to be robust for W concentrations above a few 10(-5) and in cases where the contributions from other medium-Z impurities such as Ni are negligible.

Determination of 2D poloidal maps of the intrinsic W density for transport studies in JET-ILW / Sertoli, Marco; Flanagan, Joanne; Maslov, Mikhail; Maggi, Costanza; Coffey, Ivor; Giroud, Carine; Menmuir, Sheena; Carvalho, Pedro; Shaw, Anthony; Delabie, Ephrem; Subba, Fabio. - In: REVIEW OF SCIENTIFIC INSTRUMENTS. - ISSN 0034-6748. - 89:11(2018). [10.1063/1.5046562]

Determination of 2D poloidal maps of the intrinsic W density for transport studies in JET-ILW

Subba, Fabio
2018

Abstract

The experimental method developed at ASDEX Upgrade for the determination of the intrinsic tungsten (W) density profile coupling data from the soft X-ray (SXR) diagnostic and vacuum-ultra-violet (VUV) spectroscopy has been upgraded for application to JET plasmas. The strong poloidal asymmetries in the SXR emission are modeled assuming a ln(epsilon(rho, R)/epsilon(rho, R-0)) = lambda(rho)(R-2 - R-0(2)) distribution, where rho is the flux coordinate, R is the major radius, and lambda is the fit parameter. The W density is calculated from the resulting 2D SXR emissivity maps accounting for contributions from a low-Z impurity (typically beryllium) and main ion with the assumption that their contributions are poloidally symmetric. Comparing the result with the independent W concentration measurement of VUV spectroscopy, a recalibration factor for the SXR emissivity is calculated making the method robust against the decrease in the sensitivity of the SXR diodes which has been observed across multiple campaigns. The final 2D W density map is checked for consistency versus the time-evolution of the W concentration measurement from VUV spectroscopy, toroidal rotation measurements from charge exchange recombination spectroscopy, and tomographic reconstructions of bolometry data. The method has been found to be robust for W concentrations above a few 10(-5) and in cases where the contributions from other medium-Z impurities such as Ni are negligible.
File in questo prodotto:
File Dimensione Formato  
61035_paper.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 1.6 MB
Formato Adobe PDF
1.6 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2986739