This review analyzed the literature data about the global warming potential (GWP) of the lithium-ion battery (LIB) lifecycle, e.g., raw material mining, production, use, and end of life. The literature data were associated with three macro-areas—Asia, Europe, and the USA—considering common LIBs (nickel manganese cobalt (NMC) and lithium iron phosphate (LFP)). The GWP (kgCO2eq/kg) values were higher for use compared to raw material mining, production, and end of life management for hydrometallurgy or pyrometallurgy. Considering the significant values associated with the use phase and the frequent application of secondary data, this study also calculated the GWP of LIBs applied in public urban buses in Turin, Italy. The 2021 fleet (53% diesel, 36% natural gas, and 11% electric buses) was compared to scenarios with increasing shares of hybrid/electric. The largest reduction in CO2eq emissions (−41%) corresponded to a fleet with 64% electric buses. In conclusion, this review highlighted the bottlenecks of the existing literature on the GWP of the LIB lifecycle, a lack of data for specific macro-areas for production and use, and the key role of public transportation in decarbonizing urban areas.

Environmental Assessment of Lithium-Ion Battery Lifecycle and of Their Use in Commercial Vehicles / Nastasi, Livia; Fiore, Silvia. - In: BATTERIES. - ISSN 2313-0105. - ELETTRONICO. - 10:3(2024), pp. 1-16. [10.3390/batteries10030090]

Environmental Assessment of Lithium-Ion Battery Lifecycle and of Their Use in Commercial Vehicles

Nastasi, Livia;Fiore, Silvia
2024

Abstract

This review analyzed the literature data about the global warming potential (GWP) of the lithium-ion battery (LIB) lifecycle, e.g., raw material mining, production, use, and end of life. The literature data were associated with three macro-areas—Asia, Europe, and the USA—considering common LIBs (nickel manganese cobalt (NMC) and lithium iron phosphate (LFP)). The GWP (kgCO2eq/kg) values were higher for use compared to raw material mining, production, and end of life management for hydrometallurgy or pyrometallurgy. Considering the significant values associated with the use phase and the frequent application of secondary data, this study also calculated the GWP of LIBs applied in public urban buses in Turin, Italy. The 2021 fleet (53% diesel, 36% natural gas, and 11% electric buses) was compared to scenarios with increasing shares of hybrid/electric. The largest reduction in CO2eq emissions (−41%) corresponded to a fleet with 64% electric buses. In conclusion, this review highlighted the bottlenecks of the existing literature on the GWP of the LIB lifecycle, a lack of data for specific macro-areas for production and use, and the key role of public transportation in decarbonizing urban areas.
2024
File in questo prodotto:
File Dimensione Formato  
batteries-10-00090.pdf

accesso aperto

Descrizione: articolo
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 1.79 MB
Formato Adobe PDF
1.79 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2986561