We present a formal kinetic derivation of a second order macroscopic traffic model from a stochastic particle model. The macroscopic model is given by a system of hyperbolic partial differential equations (PDEs) with a discontinuous flux function, in which the traffic density and the headway are the averaged quantities. A numerical study illustrates the performance of the second order model compared to the particle approach. We also analyse numerically uncertain traffic accidents by considering statistical measures of the solution to the PDEs.

Hydrodynamic traffic flow models including random accidents: A kinetic derivation / Chiarello, Felisia Angela; Göttlich, Simone; Schillinger, Thomas; Tosin, Andrea. - In: COMMUNICATIONS IN MATHEMATICAL SCIENCES. - ISSN 1539-6746. - 22:3(2024), pp. 845-870. [10.4310/CMS.2024.v22.n3.a10]

Hydrodynamic traffic flow models including random accidents: A kinetic derivation

Tosin, Andrea
2024

Abstract

We present a formal kinetic derivation of a second order macroscopic traffic model from a stochastic particle model. The macroscopic model is given by a system of hyperbolic partial differential equations (PDEs) with a discontinuous flux function, in which the traffic density and the headway are the averaged quantities. A numerical study illustrates the performance of the second order model compared to the particle approach. We also analyse numerically uncertain traffic accidents by considering statistical measures of the solution to the PDEs.
File in questo prodotto:
File Dimensione Formato  
CfaGsStTa-uncertain_accidents.pdf

accesso riservato

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 3.27 MB
Formato Adobe PDF
3.27 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
chiarello2024CMS.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 3.36 MB
Formato Adobe PDF
3.36 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2985821