Dipolar coupled magnets proved to have the potential to be capable of successfully performing digital computation in a highly parallel way. For that, nanomagnet-based computation requires precise control of the domain wall nucleation from a well-localized region of the magnet. Co/Pt and Co/Ni multilayer stacks were successfully used to demonstrate a variety of computing devices. However, Ta/CoFeB/MgO appears more promising, thanks to the lower switching field required to achieve a full magnetization reversal, reduced thickness (less than 10 nm), and its compatibility with magnetic tunnel junctions. In this work, the switch of the information is achieved through the application of a magnetic field, which allows to scale more the nanomagnets with respect to current-driven magnetization reversal-based devices and to go toward 3-D structures. We experimentally demonstrate that Ga ions can be used to tune the energy landscape of the structured magnets to provide signal directionality and achieve a distinct logic computation. We prove that it is possible to define the artificial nucleation center (ANC) in different structures with two irradiation steps and that this approach can enable logic computation in ultrathin films by dipolar interaction. Moreover, different from previous studies, the results coming from the irradiation analysis are then used for real logic devices. We present the experimental demonstration of a set of fully working planar inverters, showing that it is possible to reach a coupling field between the input and the output, which is strong enough to reliably implement logic operations. Micromagnetic simulations are used to study the nucleation center's effectiveness with respect to its position in the magnet and to support the experiments. Our results open the path to the development of more efficient nanomagnet-based logic circuits.

Enabling Logic Computation Between Ta/CoFeB/MgO Nanomagnets / Favaro, Diego; Gnoli, Luca; Ahrens, Valentin; Mendisch, Simon; Vacca, Marco; Turvani, Giovanna; Becherer, Markus; Riente, Fabrizio. - In: IEEE TRANSACTIONS ON MAGNETICS. - ISSN 0018-9464. - STAMPA. - 59:5(2023). [10.1109/TMAG.2023.3255306]

Enabling Logic Computation Between Ta/CoFeB/MgO Nanomagnets

Favaro, Diego;Gnoli, Luca;Vacca, Marco;Turvani, Giovanna;Riente, Fabrizio
2023

Abstract

Dipolar coupled magnets proved to have the potential to be capable of successfully performing digital computation in a highly parallel way. For that, nanomagnet-based computation requires precise control of the domain wall nucleation from a well-localized region of the magnet. Co/Pt and Co/Ni multilayer stacks were successfully used to demonstrate a variety of computing devices. However, Ta/CoFeB/MgO appears more promising, thanks to the lower switching field required to achieve a full magnetization reversal, reduced thickness (less than 10 nm), and its compatibility with magnetic tunnel junctions. In this work, the switch of the information is achieved through the application of a magnetic field, which allows to scale more the nanomagnets with respect to current-driven magnetization reversal-based devices and to go toward 3-D structures. We experimentally demonstrate that Ga ions can be used to tune the energy landscape of the structured magnets to provide signal directionality and achieve a distinct logic computation. We prove that it is possible to define the artificial nucleation center (ANC) in different structures with two irradiation steps and that this approach can enable logic computation in ultrathin films by dipolar interaction. Moreover, different from previous studies, the results coming from the irradiation analysis are then used for real logic devices. We present the experimental demonstration of a set of fully working planar inverters, showing that it is possible to reach a coupling field between the input and the output, which is strong enough to reliably implement logic operations. Micromagnetic simulations are used to study the nucleation center's effectiveness with respect to its position in the magnet and to support the experiments. Our results open the path to the development of more efficient nanomagnet-based logic circuits.
File in questo prodotto:
File Dimensione Formato  
Enabling_Logic_Computation_Between_Ta_CoFeB_MgO_Nanomagnets.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 7.09 MB
Formato Adobe PDF
7.09 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2985767