Atrial fibrillation (AF) affects more than 30 million individuals worldwide, making it the most prevalent cardiac arrhythmia on a global scale. This systematic review summarizes recent advancements in applying artificial intelligence (AI) techniques for AF detection, prediction, and guiding treatment selection and risk stratification. In adherence with the PRISMA guidelines (Preferred Reporting Items for Systematic Reviews and Meta-Analyses), a total of 171 pertinent studies conducted between 2013 and 2023 were examined. Studies applying machine learning (ML) and deep learning (DL) to electrocardiogram (ECG), photoplethysmography (PPG), wearable data, and other sources were evaluated. For AF detection, most works employed DL (48 studies) and ML (28 studies) on ECG data. DL methods directly analyzed ECG waveforms and outperformed approaches relying on hand-crafted features. For prediction and risk stratification, 22 studies used ML while 7 leveraged DL on ECG. An emerging trend showed the growing potential of PPG for AF screening. Overall, AI demonstrated promising capabilities across various AF-related tasks. However, real-world implementation faces challenges including a lack of interpretability, the need for multimodal data integration, prospective performance validation, and regulatory compliance. Future research directions involve quantifying model uncertainty, enhancing transparency, and conducting population-based clinical trials to facilitate translation into practice.

Artificial intelligence for atrial fibrillation detection, prediction, and treatment: A systematic review of the last decade (2013–2023) / Salvi, Massimo; Acharya, Madhav R.; Seoni, Silvia; Faust, Oliver; Tan, Ru‐san; Barua, Prabal Datta; García, Salvador; Molinari, Filippo; Acharya, U. Rajendra. - In: WILEY INTERDISCIPLINARY REVIEWS. DATA MINING AND KNOWLEDGE DISCOVERY. - ISSN 1942-4787. - STAMPA. - 14:3(2024). [10.1002/widm.1530]

Artificial intelligence for atrial fibrillation detection, prediction, and treatment: A systematic review of the last decade (2013–2023)

Salvi, Massimo;Seoni, Silvia;Molinari, Filippo;
2024

Abstract

Atrial fibrillation (AF) affects more than 30 million individuals worldwide, making it the most prevalent cardiac arrhythmia on a global scale. This systematic review summarizes recent advancements in applying artificial intelligence (AI) techniques for AF detection, prediction, and guiding treatment selection and risk stratification. In adherence with the PRISMA guidelines (Preferred Reporting Items for Systematic Reviews and Meta-Analyses), a total of 171 pertinent studies conducted between 2013 and 2023 were examined. Studies applying machine learning (ML) and deep learning (DL) to electrocardiogram (ECG), photoplethysmography (PPG), wearable data, and other sources were evaluated. For AF detection, most works employed DL (48 studies) and ML (28 studies) on ECG data. DL methods directly analyzed ECG waveforms and outperformed approaches relying on hand-crafted features. For prediction and risk stratification, 22 studies used ML while 7 leveraged DL on ECG. An emerging trend showed the growing potential of PPG for AF screening. Overall, AI demonstrated promising capabilities across various AF-related tasks. However, real-world implementation faces challenges including a lack of interpretability, the need for multimodal data integration, prospective performance validation, and regulatory compliance. Future research directions involve quantifying model uncertainty, enhancing transparency, and conducting population-based clinical trials to facilitate translation into practice.
File in questo prodotto:
File Dimensione Formato  
manuscript_AF clean.docx

embargo fino al 05/02/2025

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 3.25 MB
Formato Microsoft Word XML
3.25 MB Microsoft Word XML   Visualizza/Apri   Richiedi una copia
Salvi-Artificial.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 5.92 MB
Formato Adobe PDF
5.92 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2985675