Real-time monitoring of bacterial contaminants and pollutants in food is of paramount importance nowadays, owing to the impressive extension of the food production/supply chain and the consequent increase in foodborne outbreaks worldwide. This represents a serious risk for consumers' health and accounts for a large fraction of food wastage, especially in the developed countries. Therefore, modern sensors for food quality control should possibly afford low-cost, portability, and easiness of readout to enable widespread diffusion of the technology, thus allowing food quality monitoring from the production/supply chain to the consumers' table. In these regards, one-dimensional photonic crystals, also known as Distributed Bragg Reflectors (DBRs), can represent simple yet efficient all-optical and label-free colorimetric sensors, given their relatively high color purity, easiness of integration with a large number of stimulus responsive materials, and low-cost fabrication from scalable processes. In this perspective article, we discuss the development of DBRs-based colorimetric sensors for the monitoring of bacterial contaminants and pollutants of interest in the food quality sector. We aim at providing a systematic overview on the main approaches that have been employed to achieve selectivity and sensitivity in DBRs-based sensors, with the view to enable widespread use of this technology at both the industry/supply chain and customers' level.
Distributed Bragg reflectors for the colorimetric detection of bacterial contaminants and pollutants for food quality control / Paterno, G. M.; Manfredi, G.; Scotognella, F.; Lanzani, G.. - In: APL PHOTONICS. - ISSN 2378-0967. - 5:8(2020), pp. 1-10. [10.1063/5.0013516]
Distributed Bragg reflectors for the colorimetric detection of bacterial contaminants and pollutants for food quality control
Scotognella F.;
2020
Abstract
Real-time monitoring of bacterial contaminants and pollutants in food is of paramount importance nowadays, owing to the impressive extension of the food production/supply chain and the consequent increase in foodborne outbreaks worldwide. This represents a serious risk for consumers' health and accounts for a large fraction of food wastage, especially in the developed countries. Therefore, modern sensors for food quality control should possibly afford low-cost, portability, and easiness of readout to enable widespread diffusion of the technology, thus allowing food quality monitoring from the production/supply chain to the consumers' table. In these regards, one-dimensional photonic crystals, also known as Distributed Bragg Reflectors (DBRs), can represent simple yet efficient all-optical and label-free colorimetric sensors, given their relatively high color purity, easiness of integration with a large number of stimulus responsive materials, and low-cost fabrication from scalable processes. In this perspective article, we discuss the development of DBRs-based colorimetric sensors for the monitoring of bacterial contaminants and pollutants of interest in the food quality sector. We aim at providing a systematic overview on the main approaches that have been employed to achieve selectivity and sensitivity in DBRs-based sensors, with the view to enable widespread use of this technology at both the industry/supply chain and customers' level.File | Dimensione | Formato | |
---|---|---|---|
Paternò et al. - 2020 - Distributed Bragg reflectors for the colorimetric .pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
4.78 MB
Formato
Adobe PDF
|
4.78 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2985636