Growing CdSe/CdS nanocrystals from a large CdSe core, and employing a giant CdS shell, a continuous, broadband gain spectrum, covering the spectral range between the CdSe and the CdS band edge, is induced. As revealed by k·p calculations, this feature is enabled by a set of closely spaced S-, P- and, for larger CdSe cores, D-state hole levels, which are thermally occupied at room temperature, combined with a sparse density of electron states. This leads to a range of bleach signals in the transient absorption spectra that persist up to a microsecond. By extending a state-filling model including relevant higher-energy states and a Fermi–Dirac distribution of holes at finite temperature, it is shown that thermal occupancy can lower the gain threshold for excited states. Inclusion of Gaussian broadening of discrete transitions also leads to a smoothening of the gain threshold spectrum. Next to a direct measurement of the gain threshold, a method is also developed to extract this from the gain lifetime, taking advantage that population inversion is limited by Auger recombination and recombination rates scale with the exciton density as 〈N〉·(〈N〉 − 1). The results should be readily extendable to other systems, such as perovskite or III–V colloidal nanocrystals.

Role of Thermally Occupied Hole States in Room‐Temperature Broadband Gain in CdSe/CdS Giant‐Shell Nanocrystals / Tanghe, Ivo; Llusar, Jordi; Climente, Juan I.; Barker, Alex; Paternò, Giuseppe; Scotognella, Francesco; Polovitsyn, Anatolii; Khan, Ali Hossain; Hens, Zeger; Van Thourhout, Dries; Geiregat, Pieter; Moreels, Iwan. - In: ADVANCED OPTICAL MATERIALS. - ISSN 2195-1071. - 10:21(2022), pp. 1-9. [10.1002/adom.202201378]

Role of Thermally Occupied Hole States in Room‐Temperature Broadband Gain in CdSe/CdS Giant‐Shell Nanocrystals

Scotognella, Francesco;
2022

Abstract

Growing CdSe/CdS nanocrystals from a large CdSe core, and employing a giant CdS shell, a continuous, broadband gain spectrum, covering the spectral range between the CdSe and the CdS band edge, is induced. As revealed by k·p calculations, this feature is enabled by a set of closely spaced S-, P- and, for larger CdSe cores, D-state hole levels, which are thermally occupied at room temperature, combined with a sparse density of electron states. This leads to a range of bleach signals in the transient absorption spectra that persist up to a microsecond. By extending a state-filling model including relevant higher-energy states and a Fermi–Dirac distribution of holes at finite temperature, it is shown that thermal occupancy can lower the gain threshold for excited states. Inclusion of Gaussian broadening of discrete transitions also leads to a smoothening of the gain threshold spectrum. Next to a direct measurement of the gain threshold, a method is also developed to extract this from the gain lifetime, taking advantage that population inversion is limited by Auger recombination and recombination rates scale with the exciton density as 〈N〉·(〈N〉 − 1). The results should be readily extendable to other systems, such as perovskite or III–V colloidal nanocrystals.
File in questo prodotto:
File Dimensione Formato  
Tanghe et al. - 2022 - Role of Thermally Occupied Hole States in Room‐Temperature Broadband Gain in CdSeCdS Giant‐Shell Nanocrystals.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 5.41 MB
Formato Adobe PDF
5.41 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2985592