Achieving an active manipulation of colours has huge implications in optoelectronics, as colour engineering can be exploited in a number of applications, ranging from display to lightning. In the last decade, the synergy of the highly pure colours of 1D photonic crystals, also known as Bragg stacks, with electro-tunable materials have been proposed as an interesting route to attain such a technologically relevant effect. However, recent works rely on the use of liquid electrolytes, which can pose issues in terms of chemical and environmental stability. Here, we report on the proof-of-concept of an electrolyte free and solution-processed electro-responsive Bragg stack. We integrate an electro-responsive plasmonic metal oxide, namely indium tin oxide, in a 1D photonic crystal structure made of alternating layers of ITO and TiO2 nanoparticles. In such a device, we observed a maximum of 23 nm blue-shift upon the application of an external bias (10 V). Our data suggest that electrochromism can be attained in all-solid state systems by combining a judicious selection of the constituent materials with device architecture optimisation. This journal is
Electro-responsivity in electrolyte-free and solution processed Bragg stacks / Moscardi, L.; Paterno, G. M.; Chiasera, A.; Sorrentino, R.; Marangi, F.; Kriegel, I.; Lanzani, G.; Scotognella, F.. - In: JOURNAL OF MATERIALS CHEMISTRY. C. - ISSN 2050-7534. - 8:37(2020), pp. 13019-13024. [10.1039/d0tc02437f]
Electro-responsivity in electrolyte-free and solution processed Bragg stacks
Kriegel I.;Scotognella F.
2020
Abstract
Achieving an active manipulation of colours has huge implications in optoelectronics, as colour engineering can be exploited in a number of applications, ranging from display to lightning. In the last decade, the synergy of the highly pure colours of 1D photonic crystals, also known as Bragg stacks, with electro-tunable materials have been proposed as an interesting route to attain such a technologically relevant effect. However, recent works rely on the use of liquid electrolytes, which can pose issues in terms of chemical and environmental stability. Here, we report on the proof-of-concept of an electrolyte free and solution-processed electro-responsive Bragg stack. We integrate an electro-responsive plasmonic metal oxide, namely indium tin oxide, in a 1D photonic crystal structure made of alternating layers of ITO and TiO2 nanoparticles. In such a device, we observed a maximum of 23 nm blue-shift upon the application of an external bias (10 V). Our data suggest that electrochromism can be attained in all-solid state systems by combining a judicious selection of the constituent materials with device architecture optimisation. This journal isFile | Dimensione | Formato | |
---|---|---|---|
2003.14050.pdf
accesso aperto
Tipologia:
1. Preprint / submitted version [pre- review]
Licenza:
Creative commons
Dimensione
973.04 kB
Formato
Adobe PDF
|
973.04 kB | Adobe PDF | Visualizza/Apri |
d0tc02437f.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
2.79 MB
Formato
Adobe PDF
|
2.79 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2985372