Objective. Prior to radiation therapy planning, accurate delineation of gross tumour volume (GTVs) and organs at risk (OARs) is crucial. In the current clinical practice, tumour delineation is performed manually by radiation oncologists, which is time-consuming and prone to large inter-observer variability. With the advent of deep learning (DL) models, automated contouring has become possible, speeding up procedures and assisting clinicians. However, these tools are currently used in the clinic mostly for contouring OARs, since these systems are not reliable yet for contouring GTVs. To improve the reliability of these systems, researchers have started exploring the topic of probabilistic neural networks. However, there is still limited knowledge of the practical implementation of such networks in real clinical settings.Approach. In this work, we developed a 3D probabilistic system that generates DL-based uncertainty maps for lung cancer CT segmentations. We employed the Monte Carlo (MC) dropout technique to generate probabilistic and uncertainty maps, while the model calibration was evaluated by using reliability diagrams. A clinical validation was conducted in collaboration with a radiation oncologist to qualitatively assess the value of the uncertainty estimates. We also proposed two novel metrics, namely mean uncertainty (MU) and relative uncertainty volume (RUV), as potential indicators for clinicians to assess the need for independent visual checks of the DL-based segmentation. Main results. Our study showed that uncertainty mapping effectively identified cases of under or over-contouring. Although the overconfidence of the model, a strong correlation was observed between the clinical opinion and MU metric. Moreover, both MU and RUV revealed high AUC values in discretising between low and high uncertainty cases.Significance. Our study is one of the first attempts to clinically validate uncertainty estimates in DL-based contouring. The two proposed metrics exhibited promising potential as indicators for clinicians to independently assess the quality of tumour delineation.

Clinical assessment of deep learning-based uncertainty maps in lung cancer segmentation / Maruccio, Federica Carmen; Eppinga, Wietse; Laves, Max-Heinrich; Navarro, Roger Fonolla; Salvi, Massimo; Molinari, Filippo; Papaconstadopoulos, Pavlos. - In: PHYSICS IN MEDICINE AND BIOLOGY. - ISSN 0031-9155. - STAMPA. - 69:3(2024). [10.1088/1361-6560/ad1a26]

Clinical assessment of deep learning-based uncertainty maps in lung cancer segmentation

Salvi, Massimo;Molinari, Filippo;
2024

Abstract

Objective. Prior to radiation therapy planning, accurate delineation of gross tumour volume (GTVs) and organs at risk (OARs) is crucial. In the current clinical practice, tumour delineation is performed manually by radiation oncologists, which is time-consuming and prone to large inter-observer variability. With the advent of deep learning (DL) models, automated contouring has become possible, speeding up procedures and assisting clinicians. However, these tools are currently used in the clinic mostly for contouring OARs, since these systems are not reliable yet for contouring GTVs. To improve the reliability of these systems, researchers have started exploring the topic of probabilistic neural networks. However, there is still limited knowledge of the practical implementation of such networks in real clinical settings.Approach. In this work, we developed a 3D probabilistic system that generates DL-based uncertainty maps for lung cancer CT segmentations. We employed the Monte Carlo (MC) dropout technique to generate probabilistic and uncertainty maps, while the model calibration was evaluated by using reliability diagrams. A clinical validation was conducted in collaboration with a radiation oncologist to qualitatively assess the value of the uncertainty estimates. We also proposed two novel metrics, namely mean uncertainty (MU) and relative uncertainty volume (RUV), as potential indicators for clinicians to assess the need for independent visual checks of the DL-based segmentation. Main results. Our study showed that uncertainty mapping effectively identified cases of under or over-contouring. Although the overconfidence of the model, a strong correlation was observed between the clinical opinion and MU metric. Moreover, both MU and RUV revealed high AUC values in discretising between low and high uncertainty cases.Significance. Our study is one of the first attempts to clinically validate uncertainty estimates in DL-based contouring. The two proposed metrics exhibited promising potential as indicators for clinicians to independently assess the quality of tumour delineation.
File in questo prodotto:
File Dimensione Formato  
Maruccio+et+al_2024_Phys._Med._Biol._10.1088_1361-6560_ad1a26.pdf

embargo fino al 25/01/2025

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Creative commons
Dimensione 1.07 MB
Formato Adobe PDF
1.07 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Salvi-Clinical.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.15 MB
Formato Adobe PDF
1.15 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2985362