The Destination Earth (DestinE) European initiative has recently brought into the scientific community the concept of the Digital Twin (DT) applied to Earth Sciences. Within 2030, a very high precision digital model of the Earth, continuously fed and powered by Earth Observation (EO) data, will provide as many digital replicas (DTs) as the different domains of the earth sciences are. Considering that a DT is driven by use cases, depending on the selected application, the provided information has to change. It follows that, to achieve a reliable representation of the selected use case, a reasonable and complete a priori definition of the needed elements that DT must contain is mandatory. In this work, we define a possible theoretical framework for a future DT of the Italian Alpine glaciers, trying to define and describe all those information (both EO and in situ data) and relationships that necessarily have to enter the process as building blocks of the DT itself. Two main aspects of glaciers were considered and investigated: (i) the "metric quantification" of their spatial dynamics (achieved through measures) and (ii) the "qualitative (semantic) description" of their health status as definable through observations from domain experts. After the first identification of the building blocks, the work proceeds focusing on existing EO data sources providing their essential elements, with specific focus on open access high-resolution (HR) and very-high-resolution (VHR) images. This last issue considered two scales of analysis: local (single glacier) and regional (Italian Alps). Some considerations were furtherly reported about the expected glaciers-related applications enabled by the availability of a DT at regional level. Applications involving both metric and semantic information were considered and grouped in three main clusters: Glaciers Evolution Modelling (GEM), 4D Multi Reality, and Virtual Reality. Limitations were additionally explored, mainly related to the technical characteristics of available EO VHR open data and some conclusions provided.

Towards a Digital Twin Prototype of Alpine Glaciers: Proposal for a Possible Theoretical Framework / Fissore, V.; Bovio, L.; Perotti, L.; Boccardo, P.; Borgogno-Mondino, E.. - In: REMOTE SENSING. - ISSN 2072-4292. - ELETTRONICO. - 15:11(2023), pp. 1-21. [10.3390/rs15112844]

Towards a Digital Twin Prototype of Alpine Glaciers: Proposal for a Possible Theoretical Framework

Bovio L.;Perotti L.;Boccardo P.;
2023

Abstract

The Destination Earth (DestinE) European initiative has recently brought into the scientific community the concept of the Digital Twin (DT) applied to Earth Sciences. Within 2030, a very high precision digital model of the Earth, continuously fed and powered by Earth Observation (EO) data, will provide as many digital replicas (DTs) as the different domains of the earth sciences are. Considering that a DT is driven by use cases, depending on the selected application, the provided information has to change. It follows that, to achieve a reliable representation of the selected use case, a reasonable and complete a priori definition of the needed elements that DT must contain is mandatory. In this work, we define a possible theoretical framework for a future DT of the Italian Alpine glaciers, trying to define and describe all those information (both EO and in situ data) and relationships that necessarily have to enter the process as building blocks of the DT itself. Two main aspects of glaciers were considered and investigated: (i) the "metric quantification" of their spatial dynamics (achieved through measures) and (ii) the "qualitative (semantic) description" of their health status as definable through observations from domain experts. After the first identification of the building blocks, the work proceeds focusing on existing EO data sources providing their essential elements, with specific focus on open access high-resolution (HR) and very-high-resolution (VHR) images. This last issue considered two scales of analysis: local (single glacier) and regional (Italian Alps). Some considerations were furtherly reported about the expected glaciers-related applications enabled by the availability of a DT at regional level. Applications involving both metric and semantic information were considered and grouped in three main clusters: Glaciers Evolution Modelling (GEM), 4D Multi Reality, and Virtual Reality. Limitations were additionally explored, mainly related to the technical characteristics of available EO VHR open data and some conclusions provided.
2023
File in questo prodotto:
File Dimensione Formato  
remotesensing-15-02844-v2.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 8.93 MB
Formato Adobe PDF
8.93 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2985237