We prove uniform parabolic Hölder estimates of De Giorgi–Nash–Moser type for sequences of minimizers of the functionals Eε(W) = ∞ 0 e−t/ε ε RN+1 + ya ε|∂t W| 2 + |∇W| 2 dX + RN ×{0} (w) dx dt, ε ∈ (0, 1) where a ∈ (−1, 1) is a fixed parameter, RN+1 + is the upper half-space and dX = dxdy. As a consequence, we deduce the existence and Hölder regularity of weak solutions to a class of weighted nonlinear Cauchy– Neumann problems arising in combustion theory and fractional diffusion

On the existence and Hölder regularity of solutions to some nonlinear Cauchy–Neumann problems / Audrito, A.. - In: JOURNAL OF EVOLUTION EQUATIONS. - ISSN 1424-3199. - 23:3(2023), pp. 1-45. [10.1007/s00028-023-00899-7]

On the existence and Hölder regularity of solutions to some nonlinear Cauchy–Neumann problems

Audrito A.
2023

Abstract

We prove uniform parabolic Hölder estimates of De Giorgi–Nash–Moser type for sequences of minimizers of the functionals Eε(W) = ∞ 0 e−t/ε ε RN+1 + ya ε|∂t W| 2 + |∇W| 2 dX + RN ×{0} (w) dx dt, ε ∈ (0, 1) where a ∈ (−1, 1) is a fixed parameter, RN+1 + is the upper half-space and dX = dxdy. As a consequence, we deduce the existence and Hölder regularity of weak solutions to a class of weighted nonlinear Cauchy– Neumann problems arising in combustion theory and fractional diffusion
File in questo prodotto:
File Dimensione Formato  
On the existence and Hölder regularity of solutions to some nonlinear Cauchy–Neumann problems.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 664.99 kB
Formato Adobe PDF
664.99 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2985051