Brittle failure, or spalling, occurs around openings excavated in hard rock masses with high in situ stresses. It takes place due to the nucleation and growth of cracks around the excavation boundary, induced by the redistribution of stresses following the excavation. Modelling this failure process is a tough challenge. The hybrid finite-discrete element method (FDEM) can overcome the boundary between continuum and discontinuum, capturing emergent discontinuities associated with brittle fracturing processes. In this study, FDEM is applied using a commercial code to show its applicability to model brittle behaviour around deep underground excavations in the case of the Torino-Lyon Base tunnel in three different stress conditions. Except for the hydrostatic condition, cracking is triggered immediately after the excavation. Spalling occurring around the tunnel is quite extended; therefore, an accurately designed support must be installed to prevent blocks from falling from the tunnel boundary. The obtained results are aligned with previous results existing in the literature. However, in this case, a deeper spalling is caused by the shape change due to the gradual stress redistribution. Such a phenomenon underlines the importance of using a code able to identify crack propagation, opening, and the formation of loose blocks that progressively modify the tunnel contour.

Application of a Finite-Discrete Element Method Code for Modelling Rock Spalling in Tunnels: The Case of the Lyon-Turin Base Tunnel / Martinelli, Daniele; Insana, Alessandra. - In: APPLIED SCIENCES. - ISSN 2076-3417. - ELETTRONICO. - 14:2(2024), pp. 1-15. [10.3390/app14020591]

Application of a Finite-Discrete Element Method Code for Modelling Rock Spalling in Tunnels: The Case of the Lyon-Turin Base Tunnel

Martinelli, Daniele;Insana, Alessandra
2024

Abstract

Brittle failure, or spalling, occurs around openings excavated in hard rock masses with high in situ stresses. It takes place due to the nucleation and growth of cracks around the excavation boundary, induced by the redistribution of stresses following the excavation. Modelling this failure process is a tough challenge. The hybrid finite-discrete element method (FDEM) can overcome the boundary between continuum and discontinuum, capturing emergent discontinuities associated with brittle fracturing processes. In this study, FDEM is applied using a commercial code to show its applicability to model brittle behaviour around deep underground excavations in the case of the Torino-Lyon Base tunnel in three different stress conditions. Except for the hydrostatic condition, cracking is triggered immediately after the excavation. Spalling occurring around the tunnel is quite extended; therefore, an accurately designed support must be installed to prevent blocks from falling from the tunnel boundary. The obtained results are aligned with previous results existing in the literature. However, in this case, a deeper spalling is caused by the shape change due to the gradual stress redistribution. Such a phenomenon underlines the importance of using a code able to identify crack propagation, opening, and the formation of loose blocks that progressively modify the tunnel contour.
2024
File in questo prodotto:
File Dimensione Formato  
applsci-14-00591_compressed.pdf

accesso aperto

Descrizione: Articolo
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 718.08 kB
Formato Adobe PDF
718.08 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2985044