The thermal and electrical responses of additive manufactured specimens were analysed for a additive manufactured steel magnetic shield as a case study. The analysis was based on the evidence that variations in the thermal properties of a material can be measured as a phase delay in thermal diffusion through the material bulk. The signal post-processing was performed, and the results were presented in a phase diagram. The results showed that after heat treatment, the slope of the phase diagram changed to less steep, indicating an increase in thermal diffusivity and hence thermal conductivity. The electrical conductivity was predicted using the thermal conductivity and the Weidemann-Franz law and validated by experimental measurements of the electrical conductivity. The same approach was applied to predict the electrical conductivity in the magnetic shielding, taking into consideration the scaling of the density due to porosity. The results showed that the thermographic non-destructive full field non-contact approach can be used to evaluate the electrical properties of a component and that the heat-treated specimens show better thermal diffusivity and hence thermal and electrical conductivity.

Measuring Thermal and Electrical Performances of Additively Manufactured Magnetic Shielding Material: An Active Thermography Approach / Santoro, Luca; Quercio, Michele; Canova, Aldo; Sesana, Raffaella. - In: NONDESTRUCTIVE TESTING AND EVALUATION. - ISSN 1058-9759. - STAMPA. - (2024). [10.1080/10589759.2024.2305703]

Measuring Thermal and Electrical Performances of Additively Manufactured Magnetic Shielding Material: An Active Thermography Approach

Santoro, Luca;Quercio, Michele;Canova, Aldo;Sesana, Raffaella
2024

Abstract

The thermal and electrical responses of additive manufactured specimens were analysed for a additive manufactured steel magnetic shield as a case study. The analysis was based on the evidence that variations in the thermal properties of a material can be measured as a phase delay in thermal diffusion through the material bulk. The signal post-processing was performed, and the results were presented in a phase diagram. The results showed that after heat treatment, the slope of the phase diagram changed to less steep, indicating an increase in thermal diffusivity and hence thermal conductivity. The electrical conductivity was predicted using the thermal conductivity and the Weidemann-Franz law and validated by experimental measurements of the electrical conductivity. The same approach was applied to predict the electrical conductivity in the magnetic shielding, taking into consideration the scaling of the density due to porosity. The results showed that the thermographic non-destructive full field non-contact approach can be used to evaluate the electrical properties of a component and that the heat-treated specimens show better thermal diffusivity and hence thermal and electrical conductivity.
File in questo prodotto:
File Dimensione Formato  
Measuringthermalandelectricalperformancesofadditivelymanufacturedmagneticshieldingmaterialanactivethermographyapproach.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 7.8 MB
Formato Adobe PDF
7.8 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Taylor___Francis_LaTeX_template_for_authors__Interact_layout___NLM_reference_style_ (1).pdf

embargo fino al 24/01/2025

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Creative commons
Dimensione 8.95 MB
Formato Adobe PDF
8.95 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2984992