Purpose: To better define the overall performance of the current radiomics-based models for the discrimination of pediatric posterior fossa tumors. Methods: A comprehensive literature search of the databases PubMed, Ovid MEDLINE, Ovid EMBASE, Web of Science, and Scopus was designed and conducted by an experienced librarian. We estimated overall sensitivity (SEN) and specificity (SPE). Event rates were pooled across studies using a random-effects meta-analysis, and the χ2 test was performed to assess the heterogeneity. Results: Overall SEN and SPE for differentiation between MB, PA, and EP were found to be promising, with SEN values of 93% (95% CI = 0.88-0.96), 83% (95% CI = 0.66-0.93), and 85% (95% CI = 0.71-0.93), and corresponding SPE values of 87% (95% CI = 0.82-0.90), 95% (95% CI = 0.90-0.98) and 90% (95% CI = 0.84-0.94), respectively. For MB, there is a better trend for LR classifiers, while textural features are the most used and the best performing (ACC 96%). As for PA and EP, a synergistic employment of LR and NN classifiers, accompanied by geometrical or morphological features, demonstrated superior performance (ACC 94% and 96%, respectively). Conclusions: The diagnostic performance is high, making radiomics a helpful method to discriminate these tumor types. In the forthcoming years, we expect even more precise models.
Radiomics for Differentiation of Pediatric Posterior Fossa Tumors: A Meta-Analysis and Systematic Review of the Literature / Garaba, Alexandru; Ponzio, Francesco; Grasso, Eleonora Agata; Brinjikji, Waleed; Fontanella, Marco Maria; De Maria, Lucio. - In: CANCERS. - ISSN 2072-6694. - 15:24(2023). [10.3390/cancers15245891]
Radiomics for Differentiation of Pediatric Posterior Fossa Tumors: A Meta-Analysis and Systematic Review of the Literature
Ponzio, Francesco;
2023
Abstract
Purpose: To better define the overall performance of the current radiomics-based models for the discrimination of pediatric posterior fossa tumors. Methods: A comprehensive literature search of the databases PubMed, Ovid MEDLINE, Ovid EMBASE, Web of Science, and Scopus was designed and conducted by an experienced librarian. We estimated overall sensitivity (SEN) and specificity (SPE). Event rates were pooled across studies using a random-effects meta-analysis, and the χ2 test was performed to assess the heterogeneity. Results: Overall SEN and SPE for differentiation between MB, PA, and EP were found to be promising, with SEN values of 93% (95% CI = 0.88-0.96), 83% (95% CI = 0.66-0.93), and 85% (95% CI = 0.71-0.93), and corresponding SPE values of 87% (95% CI = 0.82-0.90), 95% (95% CI = 0.90-0.98) and 90% (95% CI = 0.84-0.94), respectively. For MB, there is a better trend for LR classifiers, while textural features are the most used and the best performing (ACC 96%). As for PA and EP, a synergistic employment of LR and NN classifiers, accompanied by geometrical or morphological features, demonstrated superior performance (ACC 94% and 96%, respectively). Conclusions: The diagnostic performance is high, making radiomics a helpful method to discriminate these tumor types. In the forthcoming years, we expect even more precise models.File | Dimensione | Formato | |
---|---|---|---|
ponzio cancers-15-05891-with-cover.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
1.46 MB
Formato
Adobe PDF
|
1.46 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2984897