The design of new tokamak machines relying on the use of high temperature superconductors (HTS) is promoting the study of HTS properties at the operating conditions required by fusion applications. In particular, the interest in the damage induced by neutron irradiation on RE Ba 2 Cu 3 O 7-δ ( RE BCO, RE = Y or lanthanide series), one of the most used family of HTS, has recently risen and several studies have been devoted to radiation hardness tests performed with ion irradiation or fission neutrons. In this work, the effect of neutron irradiation on YBCO films and commercial RE BCO tapes was investigated using, for the first time, neutrons produced by the D-T fusion reaction. The experiment was carried out at ENEA-Frascati Neutron Generator (FNG) where a deuteron beam is accelerated up to 300 keV and directed on a tritiated target to produce a nearly isotropic 14.1 MeV neutron field via the T(d,n)α fusion reaction. Different YBCO films deposited through metal-organic decomposition (MOD) route on single crystals (SrTiO 3 and LaAlO 3 ) and RE BCO commercial tapes, grown by pulsed laser deposition, were irradiated. Samples exposed to three fluences were compared with a maximum neutron fluence of 1.2·10 14 cm −2 . The properties of HTS materials were assessed before and after irradiation by means of different techniques. From these measurements, no significant effect on the considered properties was recognized indicating the robustness of films up to the explored irradiation fluences.

Effect of 14.1 MeV fusion neutron irradiation on YBCO thin films and commercial REBCO tapes / Pinto, V.; Celentano, G.; De Angelis, M.; Laviano, F.; Masi, A.; Pietropaolo, A.; Tomellini, M.; Torsello, D.. - In: IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY. - ISSN 1051-8223. - 34:3(2024). [10.1109/TASC.2023.3337057]

Effect of 14.1 MeV fusion neutron irradiation on YBCO thin films and commercial REBCO tapes

Laviano, F.;Torsello, D.
2024

Abstract

The design of new tokamak machines relying on the use of high temperature superconductors (HTS) is promoting the study of HTS properties at the operating conditions required by fusion applications. In particular, the interest in the damage induced by neutron irradiation on RE Ba 2 Cu 3 O 7-δ ( RE BCO, RE = Y or lanthanide series), one of the most used family of HTS, has recently risen and several studies have been devoted to radiation hardness tests performed with ion irradiation or fission neutrons. In this work, the effect of neutron irradiation on YBCO films and commercial RE BCO tapes was investigated using, for the first time, neutrons produced by the D-T fusion reaction. The experiment was carried out at ENEA-Frascati Neutron Generator (FNG) where a deuteron beam is accelerated up to 300 keV and directed on a tritiated target to produce a nearly isotropic 14.1 MeV neutron field via the T(d,n)α fusion reaction. Different YBCO films deposited through metal-organic decomposition (MOD) route on single crystals (SrTiO 3 and LaAlO 3 ) and RE BCO commercial tapes, grown by pulsed laser deposition, were irradiated. Samples exposed to three fluences were compared with a maximum neutron fluence of 1.2·10 14 cm −2 . The properties of HTS materials were assessed before and after irradiation by means of different techniques. From these measurements, no significant effect on the considered properties was recognized indicating the robustness of films up to the explored irradiation fluences.
File in questo prodotto:
File Dimensione Formato  
2023_11_IEEETAS_Pinto.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 585.3 kB
Formato Adobe PDF
585.3 kB Adobe PDF Visualizza/Apri
Effect_of_14.1_MeV_Fusion_Neutron_Irradiation_on_YBCO_Thin_Films_and_Commercial_REBCO_Tapes.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.33 MB
Formato Adobe PDF
1.33 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2984627