The Travel Salesman Problem (TSP) consists in finding the minimal-length closed tour that connects the entire group of nodes of a given graph. We propose to solve such a combinatorial optimization problem with the AddACO algorithm: it is a version of the Ant Colony Optimization method that is characterized by a modified probabilistic law at the basis of the exploratory movement of the artificial insects. In particular, the ant decisional rule is here set to amount in a linear convex combination of competing behavioral stimuli and has therefore an additive form (hence the name of our algorithm), rather than the canonical multiplicative one. The AddACO intends to address two conceptual shortcomings that characterize classical ACO methods: (i) the population of artificial insects is in principle allowed to simultaneously minimize/maximize all migratory guidance cues (which is in implausible from a biological/ecological point of view) and (ii) a given edge of the graph has a null probability to be explored if at least one of the movement trait is therein equal to zero, i.e., regardless the intensity of the others (this in principle reduces the exploratory potential of the ant colony). Three possible variants of our method are then specified: the AddACO-V1, which includes pheromone trail and visibility as insect decisional variables, and the AddACO-V2 and the AddACO-V3, which in turn add random effects and inertia, respectively, to the two classical migratory stimuli. The three versions of our algorithm are tested on benchmark middle-scale TPS instances, in order to assess their performance and to find their optimal parameter setting. The best performing variant is finally applied to large-scale TSPs, compared to the naive Ant-Cycle Ant System, proposed by Dorigo and colleagues, and evaluated in terms of quality of the solutions, computational time, and convergence speed. The aim is in fact to show that the proposed transition probability, as long as its conceptual advantages, is competitive from a performance perspective, i.e., if it does not reduce the exploratory capacity of the ant population w.r.t. the canonical one (at least in the case of selected TSPs). A theoretical study of the asymptotic behavior of the AddACO is given in the appendix of the work, whose conclusive section contains some hints for further improvements of our algorithm, also in the perspective of its application to other optimization problems.

The AddACO: A bio-inspired modified version of the ant colony optimization algorithm to solve travel salesman problems / Scianna, M.. - In: MATHEMATICS AND COMPUTERS IN SIMULATION. - ISSN 0378-4754. - 218:(2024), pp. 357-382. [10.1016/j.matcom.2023.12.003]

The AddACO: A bio-inspired modified version of the ant colony optimization algorithm to solve travel salesman problems

Scianna M.
2024

Abstract

The Travel Salesman Problem (TSP) consists in finding the minimal-length closed tour that connects the entire group of nodes of a given graph. We propose to solve such a combinatorial optimization problem with the AddACO algorithm: it is a version of the Ant Colony Optimization method that is characterized by a modified probabilistic law at the basis of the exploratory movement of the artificial insects. In particular, the ant decisional rule is here set to amount in a linear convex combination of competing behavioral stimuli and has therefore an additive form (hence the name of our algorithm), rather than the canonical multiplicative one. The AddACO intends to address two conceptual shortcomings that characterize classical ACO methods: (i) the population of artificial insects is in principle allowed to simultaneously minimize/maximize all migratory guidance cues (which is in implausible from a biological/ecological point of view) and (ii) a given edge of the graph has a null probability to be explored if at least one of the movement trait is therein equal to zero, i.e., regardless the intensity of the others (this in principle reduces the exploratory potential of the ant colony). Three possible variants of our method are then specified: the AddACO-V1, which includes pheromone trail and visibility as insect decisional variables, and the AddACO-V2 and the AddACO-V3, which in turn add random effects and inertia, respectively, to the two classical migratory stimuli. The three versions of our algorithm are tested on benchmark middle-scale TPS instances, in order to assess their performance and to find their optimal parameter setting. The best performing variant is finally applied to large-scale TSPs, compared to the naive Ant-Cycle Ant System, proposed by Dorigo and colleagues, and evaluated in terms of quality of the solutions, computational time, and convergence speed. The aim is in fact to show that the proposed transition probability, as long as its conceptual advantages, is competitive from a performance perspective, i.e., if it does not reduce the exploratory capacity of the ant population w.r.t. the canonical one (at least in the case of selected TSPs). A theoretical study of the asymptotic behavior of the AddACO is given in the appendix of the work, whose conclusive section contains some hints for further improvements of our algorithm, also in the perspective of its application to other optimization problems.
File in questo prodotto:
File Dimensione Formato  
scianna_R3.pdf

accesso aperto

Tipologia: 1. Preprint / submitted version [pre- review]
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 1.4 MB
Formato Adobe PDF
1.4 MB Adobe PDF Visualizza/Apri
The AddACO_ A bio-inspired modified version of the ant colony optimization algorithm to solve travel salesman problems.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 2.02 MB
Formato Adobe PDF
2.02 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2984568