Controlling artificial devices that mimic the motion of real microorganisms, is attracting increasing interest, both from the mathematical point of view and applications. A model for a magnetically driven slender micro-swimmer, mimicking a sperm cell is presented, supported by two examples showing how to steer it. Using the Resistive Force Theory (RTF) approach [J. Gray and J. Hancock, J. Exp. Biol. 32, 802 (1955)] to describe the hydrodynamic forces, the micro-swimmer can be described by a driftless affine control system where the control is an external magnetic field. Moreover we discuss through at first an asymptotic analysis and then by numerical simulations how to realize different kinds of paths.
Modeling and steering magneto-elastic micro-swimmers inspired by the motility of sperm cells / Zoppello, M.; Simone, A. D. E.; Alouges, F.; Giraldi, L.. - In: ATTI DELLA ACCADEMIA PELORITANA DEI PERICOLANTI, CLASSE DI SCIENZE FISICHE MATEMATICHE E NATURALI. - ISSN 0365-0359. - 96:(2018). [10.1478/AAPP.96S3A12]
Modeling and steering magneto-elastic micro-swimmers inspired by the motility of sperm cells
Zoppello M.;
2018
Abstract
Controlling artificial devices that mimic the motion of real microorganisms, is attracting increasing interest, both from the mathematical point of view and applications. A model for a magnetically driven slender micro-swimmer, mimicking a sperm cell is presented, supported by two examples showing how to steer it. Using the Resistive Force Theory (RTF) approach [J. Gray and J. Hancock, J. Exp. Biol. 32, 802 (1955)] to describe the hydrodynamic forces, the micro-swimmer can be described by a driftless affine control system where the control is an external magnetic field. Moreover we discuss through at first an asymptotic analysis and then by numerical simulations how to realize different kinds of paths.File | Dimensione | Formato | |
---|---|---|---|
Acta.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
734.9 kB
Formato
Adobe PDF
|
734.9 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2984486