Automated storage and retrieval systems have become increasingly popular in modern supply chains due to their significant advantages over traditional warehousing systems. Due to the high complexity of these systems, simulation approaches can be used to generate accurate performance measures for a specific system configuration. Simulation models are also the cornerstone of digital twins, one of the latest technological innovations that can further improve warehouse operations. Therefore, the aim of this thesis is to describe an approach for the development of a discrete event simulation model of an automated storage and retrieval system with a perspective towards the implementation of a digital twin. To be consistent with the objectives of the digital twin, the proposed model represents both the physical system and the overarching information technology architecture, such as the warehouse management system and the warehouse control system. In addition, this paper describes a methodology to validate such a simulation model by setting up an experimental campaign based on the principles of design of experiment. The experiments conducted in a logistics laboratory were used to iteratively calibrate the model until its performance accurately reflected the functioning of the real system. The results obtained demonstrate the effectiveness of the proposed method. Finally, this work contributes to the literature on warehouse digital twins by highlighting new variables to be considered when defining travel time models and their stochastic nature.

A method for developing and validating simulation models for automated storage and retrieval system digital twins / Ferrari, A.; Carlin, A.; Rafele, C.; Zenezini, G.. - In: INTERNATIONAL JOURNAL, ADVANCED MANUFACTURING TECHNOLOGY. - ISSN 0268-3768. - ELETTRONICO. - (2023). [10.1007/s00170-023-12660-y]

A method for developing and validating simulation models for automated storage and retrieval system digital twins

Ferrari A.;Carlin A.;Rafele C.;Zenezini G.
2023

Abstract

Automated storage and retrieval systems have become increasingly popular in modern supply chains due to their significant advantages over traditional warehousing systems. Due to the high complexity of these systems, simulation approaches can be used to generate accurate performance measures for a specific system configuration. Simulation models are also the cornerstone of digital twins, one of the latest technological innovations that can further improve warehouse operations. Therefore, the aim of this thesis is to describe an approach for the development of a discrete event simulation model of an automated storage and retrieval system with a perspective towards the implementation of a digital twin. To be consistent with the objectives of the digital twin, the proposed model represents both the physical system and the overarching information technology architecture, such as the warehouse management system and the warehouse control system. In addition, this paper describes a methodology to validate such a simulation model by setting up an experimental campaign based on the principles of design of experiment. The experiments conducted in a logistics laboratory were used to iteratively calibrate the model until its performance accurately reflected the functioning of the real system. The results obtained demonstrate the effectiveness of the proposed method. Finally, this work contributes to the literature on warehouse digital twins by highlighting new variables to be considered when defining travel time models and their stochastic nature.
File in questo prodotto:
File Dimensione Formato  
s00170-023-12660-y.pdf

accesso aperto

Descrizione: Version of Record con licenza OA
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 1.65 MB
Formato Adobe PDF
1.65 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2984343