A rapidly developing area of ceramic science and technology involves research on the interaction between implanted biomaterials and the human body. Over the past half century, the use of bioceramics has revolutionized the surgical treatment of various diseases that primarily affect bone, thus contributing to significantly improving the quality of life of rehabilitated patients. Calcium phosphates, bioactive glasses and glass-ceramics are mostly used in tissue engineering applications where bone regeneration is the major goal, while stronger but almost inert biocompatible ceramics such as alumina and alumina/zirconia composites are preferable in joint prostheses. Over the last few years, non-oxide ceramics—primarily silicon nitride, silicon carbide and diamond-like coatings—have been proposed as new options in orthopaedics in order to overcome some tribological and biomechanical limitations of existing commercial products, yielding very promising results. This review is specifically addressed to these relatively less popular, non-oxide biomaterials for bone applications, highlighting their potential advantages and critical aspects deserving further research in the future. Special focus is also given to the use of non-oxide ceramics in the manufacturing of the acetabular cup, which is the most critical component of hip joint prostheses.

Non-Oxide Ceramics for Bone Implant Application: State-of-the-Art Overview with an Emphasis on the Acetabular Cup of Hip Joint Prosthesis / Paione, C. M.; Baino, F.. - In: CERAMICS. - ISSN 2571-6131. - ELETTRONICO. - 6:2(2023), pp. 994-1016. [10.3390/ceramics6020059]

Non-Oxide Ceramics for Bone Implant Application: State-of-the-Art Overview with an Emphasis on the Acetabular Cup of Hip Joint Prosthesis

Baino F.
2023

Abstract

A rapidly developing area of ceramic science and technology involves research on the interaction between implanted biomaterials and the human body. Over the past half century, the use of bioceramics has revolutionized the surgical treatment of various diseases that primarily affect bone, thus contributing to significantly improving the quality of life of rehabilitated patients. Calcium phosphates, bioactive glasses and glass-ceramics are mostly used in tissue engineering applications where bone regeneration is the major goal, while stronger but almost inert biocompatible ceramics such as alumina and alumina/zirconia composites are preferable in joint prostheses. Over the last few years, non-oxide ceramics—primarily silicon nitride, silicon carbide and diamond-like coatings—have been proposed as new options in orthopaedics in order to overcome some tribological and biomechanical limitations of existing commercial products, yielding very promising results. This review is specifically addressed to these relatively less popular, non-oxide biomaterials for bone applications, highlighting their potential advantages and critical aspects deserving further research in the future. Special focus is also given to the use of non-oxide ceramics in the manufacturing of the acetabular cup, which is the most critical component of hip joint prostheses.
2023
File in questo prodotto:
File Dimensione Formato  
Review non-oxide ceramics_Ceramics 2023.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 2.87 MB
Formato Adobe PDF
2.87 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2984036