In this research, we undertake an investigation of a turbulent flow seeded with heavy inertial particles, employing Eulerian-Lagrangian point-particle direct numerical simulations in the two-way coupling regime. The primary objective of our investigation is to assess the influence of inter-particle collisions on heat transfer within the time-evolving thermal mixing layer that develops between two regions with distinct temperatures in a homogeneous and isotropic turbulent flow. Our findings encompass a range of Stokes numbers spanning from 0.2 to 3, while maintaining a thermal Stokes number to Stokes number ratio of 4.43, at a Taylor microscale Reynolds number up to 124. Our results reveal that particle collisions tend to diminish the correlation between particle temperature and velocity, consequently leading to a marginal reduction in the average heat transfer when compared to a collisionless regime at higher Stokes numbers.

The Impact of Collisions on Heat Transfer in a Particle-Laden Shearless Turbulent Flow / ZANDI POUR, HAMID REZA; Iovieno, Michele. - In: JOURNAL OF FLUID FLOW, HEAT AND MASS TRANSFER. - ISSN 2368-6111. - ELETTRONICO. - 10:(2023), pp. 140-149. [10.11159/jffhmt.2023.018]

The Impact of Collisions on Heat Transfer in a Particle-Laden Shearless Turbulent Flow

Hamid Reza Zandi Pour;Michele Iovieno
2023

Abstract

In this research, we undertake an investigation of a turbulent flow seeded with heavy inertial particles, employing Eulerian-Lagrangian point-particle direct numerical simulations in the two-way coupling regime. The primary objective of our investigation is to assess the influence of inter-particle collisions on heat transfer within the time-evolving thermal mixing layer that develops between two regions with distinct temperatures in a homogeneous and isotropic turbulent flow. Our findings encompass a range of Stokes numbers spanning from 0.2 to 3, while maintaining a thermal Stokes number to Stokes number ratio of 4.43, at a Taylor microscale Reynolds number up to 124. Our results reveal that particle collisions tend to diminish the correlation between particle temperature and velocity, consequently leading to a marginal reduction in the average heat transfer when compared to a collisionless regime at higher Stokes numbers.
File in questo prodotto:
File Dimensione Formato  
018_compressed.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 3.7 MB
Formato Adobe PDF
3.7 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2983660