Ultra-low Reynolds number aerodynamics has gained significant attention in recent times, primarily due to the proliferation of micro-aerial vehicles and their utilization in low-density environments such as the Martian atmosphere and high altitudes in Earth's atmosphere. The Martian atmosphere presents a unique combination of low Reynolds numbers and high subsonic Mach numbers, necessitating the use of unconventional airfoil designs in this regime. This study focuses on optimizing airfoils for rotors operating in the compressible ultra-low Reynolds number regime. We demonstrate the capability of XFOIL, a panel method code incorporating an integral boundary layer formulation, to accurately predict airfoil loads when the flow remains attached. We determine the optimal camber and maximum camber positions by analyzing the four digits, two percent thickness, National Advisory Committee for Aeronautics XX02 airfoil family using XFOIL. Subsequently, we employ a multi-objective optimization approach, utilizing a Class Shape Transformation airfoil parameterization to maximize lift and minimize drag. We select several points from the resulting Pareto front and evaluate their performance through unsteady compressible Navier-Stokes simulations. Our findings reveal that incorporating sharp leading-edge variations in these airfoil designs enhances the peak efficiency by over 10%, primarily attributable to the development of laminar separation bubbles on the suction side of the airfoils. Importantly, these modified airfoils maintain favorable performance at low angles of attack.

Airfoil optimization for rotors operating in the ultra-low Reynolds number regime / Carreno Ruiz, M.; Renzulli, L.; D'Ambrosio, D.. - In: PHYSICS OF FLUIDS. - ISSN 1070-6631. - ELETTRONICO. - 35:10(2023). [10.1063/5.0166170]

Airfoil optimization for rotors operating in the ultra-low Reynolds number regime

Carreno Ruiz M.;Renzulli L.;D'Ambrosio D.
2023

Abstract

Ultra-low Reynolds number aerodynamics has gained significant attention in recent times, primarily due to the proliferation of micro-aerial vehicles and their utilization in low-density environments such as the Martian atmosphere and high altitudes in Earth's atmosphere. The Martian atmosphere presents a unique combination of low Reynolds numbers and high subsonic Mach numbers, necessitating the use of unconventional airfoil designs in this regime. This study focuses on optimizing airfoils for rotors operating in the compressible ultra-low Reynolds number regime. We demonstrate the capability of XFOIL, a panel method code incorporating an integral boundary layer formulation, to accurately predict airfoil loads when the flow remains attached. We determine the optimal camber and maximum camber positions by analyzing the four digits, two percent thickness, National Advisory Committee for Aeronautics XX02 airfoil family using XFOIL. Subsequently, we employ a multi-objective optimization approach, utilizing a Class Shape Transformation airfoil parameterization to maximize lift and minimize drag. We select several points from the resulting Pareto front and evaluate their performance through unsteady compressible Navier-Stokes simulations. Our findings reveal that incorporating sharp leading-edge variations in these airfoil designs enhances the peak efficiency by over 10%, primarily attributable to the development of laminar separation bubbles on the suction side of the airfoils. Importantly, these modified airfoils maintain favorable performance at low angles of attack.
2023
File in questo prodotto:
File Dimensione Formato  
pof23-ar-04943.pdf

Open Access dal 04/10/2024

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 3.11 MB
Formato Adobe PDF
3.11 MB Adobe PDF Visualizza/Apri
103603_1_5.0166170.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 9.3 MB
Formato Adobe PDF
9.3 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2983592