The present study focuses on developing reliable numerical models to describe the mechanical behavior of isotropic polycrystalline graphite subjected to laser shocks. Isotropic graphite of nuclear grade, which was extensively used in Beam Intercepting Devices of particle accelerators, is characterized by a high porosity enabling effective absorption of laser-induced shockwaves. Accurate numerical models which aim at describing shockwaves traveling inside porous graphite must take into account the effect of pores on the structural response of the material. In this work the Fu Chang foam material model was calibrated to capture the behavior of R4550 graphite. Based on the foam material model, hydrodynamic simulations were developed and compared to experimental data from literature and from PHELIX experimental campaign.

Dynamic behavior of porous graphite under laser-induced shocks / Morena, Alberto; Peroni, Lorenzo; Scapin, Martina. - In: MATERIALS LETTERS. - ISSN 0167-577X. - 355:(2024), p. 135499. [10.1016/j.matlet.2023.135499]

Dynamic behavior of porous graphite under laser-induced shocks

Alberto Morena;Lorenzo Peroni;Martina Scapin
2024

Abstract

The present study focuses on developing reliable numerical models to describe the mechanical behavior of isotropic polycrystalline graphite subjected to laser shocks. Isotropic graphite of nuclear grade, which was extensively used in Beam Intercepting Devices of particle accelerators, is characterized by a high porosity enabling effective absorption of laser-induced shockwaves. Accurate numerical models which aim at describing shockwaves traveling inside porous graphite must take into account the effect of pores on the structural response of the material. In this work the Fu Chang foam material model was calibrated to capture the behavior of R4550 graphite. Based on the foam material model, hydrodynamic simulations were developed and compared to experimental data from literature and from PHELIX experimental campaign.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0167577X23016841-main.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 2.21 MB
Formato Adobe PDF
2.21 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2983531