This work investigates a new nanostructured gas diffusion layer (nano-GDL) to improve the performance of air cathode single-chamber microbial fuel cells (a-SCMFCs). The new nano-GDLs improve the direct oxygen reduction reaction by exploiting the best qualities of nanofibers from electrospinning in terms of high surface-area-to-volume ratio, high porosity, and laser-based processing to promote adhesion. By electrospinning, nano-GDLs were fabricated directly by collecting two nanofiber mats on the same carbon-based electrode, acting as the substrate. Each layer was designed with a specific function: water-resistant, oxygen-permeable polyvinylidene-difluoride (PVDF) nanofibers served as a barrier to prevent water-based electrolyte leakage, while an inner layer of cellulose nanofibers was added to promote oxygen diffusion towards the catalytic sites. The maximum current density obtained for a-SCMFCs with the new nano-GDLs is 132.2 ± 10.8 mA m−2, and it doubles the current density obtained with standard PTFE-based GDL (58.5 ± 2.4 mA m−2) used as reference material. The energy recovery (EF) factor, i.e., the ratio of the power output to the inner volume of the device, was then used to evaluate the overall performance of a-SCMFCs. a-SCMFCs with nano-GDL provided an EF value of 60.83 mJ m−3, one order of magnitude higher than the value of 3.92 mJ m−3 obtained with standard GDL.

A Nanofiber-Based Gas Diffusion Layer for Improved Performance in Air Cathode Microbial Fuel Cells / Massaglia, Giulia; Serra, Tommaso; Pirri, Candido; Quaglio, Marzia. - In: NANOMATERIALS. - ISSN 2079-4991. - ELETTRONICO. - 13:20(2023), pp. 1-13. [10.3390/nano13202801]

A Nanofiber-Based Gas Diffusion Layer for Improved Performance in Air Cathode Microbial Fuel Cells

GIULIA MASSAGLIA;Tommaso Serra;Candido Pirri;Marzia Quaglio
2023

Abstract

This work investigates a new nanostructured gas diffusion layer (nano-GDL) to improve the performance of air cathode single-chamber microbial fuel cells (a-SCMFCs). The new nano-GDLs improve the direct oxygen reduction reaction by exploiting the best qualities of nanofibers from electrospinning in terms of high surface-area-to-volume ratio, high porosity, and laser-based processing to promote adhesion. By electrospinning, nano-GDLs were fabricated directly by collecting two nanofiber mats on the same carbon-based electrode, acting as the substrate. Each layer was designed with a specific function: water-resistant, oxygen-permeable polyvinylidene-difluoride (PVDF) nanofibers served as a barrier to prevent water-based electrolyte leakage, while an inner layer of cellulose nanofibers was added to promote oxygen diffusion towards the catalytic sites. The maximum current density obtained for a-SCMFCs with the new nano-GDLs is 132.2 ± 10.8 mA m−2, and it doubles the current density obtained with standard PTFE-based GDL (58.5 ± 2.4 mA m−2) used as reference material. The energy recovery (EF) factor, i.e., the ratio of the power output to the inner volume of the device, was then used to evaluate the overall performance of a-SCMFCs. a-SCMFCs with nano-GDL provided an EF value of 60.83 mJ m−3, one order of magnitude higher than the value of 3.92 mJ m−3 obtained with standard GDL.
2023
File in questo prodotto:
File Dimensione Formato  
nanomaterials-2645700_REVISED.pdf

accesso aperto

Descrizione: Versione con revisioni
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 1 MB
Formato Adobe PDF
1 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2983441