In the current context of joint efforts towards the decarbonisation of buildings, integrating occupants' comfort and health with latest technological advancements for energy efficiency is at the center of the latest development of research, policies and professional practice. Radiant systems are encountering great success since the low-thickness systems can also be used in renovation projects for both heating and cooling, while guaranteeing optimal comfort. However, dehumidification is often required for optimal radiant cooling operation with no condensation risks, and the great potential of mechanical ventilation systems to optimally address the needs for dehumidification, air renewal, health and energy efficiency appears to be far from its full exploitation in the post-COVID-19 era. The present paper aims at providing a quantification of the energy and financial impacts of the implementation of a controlled mechanical ventilation system (CMV) coupled to a radiant system in a typical residential case study building in Italy. The results show that the sole CMV may decrease primary energy demand and energy costs by more than 30% and contribute to an increase in the smart readiness of the building by 8%, but further incentive policies must be developed to cover the still high investment and maintenance cost.

On the multi-domain impacts of coupling mechanical ventilation to radiant systems in residential buildings / Ferrara, Maria; Peretti, Clara; Fabrizio, Enrico; Corgnati, Stefano Paolo. - In: ENERGIES. - ISSN 1996-1073. - 16:13(2023), pp. 1-14. [10.3390/en16134870]

On the multi-domain impacts of coupling mechanical ventilation to radiant systems in residential buildings

Ferrara, Maria;Fabrizio, Enrico;Corgnati, Stefano Paolo
2023

Abstract

In the current context of joint efforts towards the decarbonisation of buildings, integrating occupants' comfort and health with latest technological advancements for energy efficiency is at the center of the latest development of research, policies and professional practice. Radiant systems are encountering great success since the low-thickness systems can also be used in renovation projects for both heating and cooling, while guaranteeing optimal comfort. However, dehumidification is often required for optimal radiant cooling operation with no condensation risks, and the great potential of mechanical ventilation systems to optimally address the needs for dehumidification, air renewal, health and energy efficiency appears to be far from its full exploitation in the post-COVID-19 era. The present paper aims at providing a quantification of the energy and financial impacts of the implementation of a controlled mechanical ventilation system (CMV) coupled to a radiant system in a typical residential case study building in Italy. The results show that the sole CMV may decrease primary energy demand and energy costs by more than 30% and contribute to an increase in the smart readiness of the building by 8%, but further incentive policies must be developed to cover the still high investment and maintenance cost.
2023
File in questo prodotto:
File Dimensione Formato  
energies-16-04870 (2).pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 3.75 MB
Formato Adobe PDF
3.75 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2983227