Finite element simulations of the optical behavior of gold nanostars in water reveal a new view of collective electron cloud oscillations, where localized surface plasmon resonances coexist with coherent delocalized interface waves, i.e., propagating surface plasmons. Gold nanostar spikes long enough to allow propagating polaritons and short enough to resonate with the spherical core serve as the substrate for the observed overlap between propagating modes and localized hot spots. Transverse plane plots reveal bulk polaritons coupled to surface ones. In light of these observations, we explore the mechanisms that drive plasmonic coupling in nanostars from the single spike level to multispiked and multiparticle systems.

Interface and Bulk Standing Waves Drive the Coupling of Plasmonic Nanostar Antennas / Tsoulos, T V; Fabris, L. - In: JOURNAL OF PHYSICAL CHEMISTRY. C. - ISSN 1932-7447. - 122:50(2018), pp. 28949-28957. [10.1021/acs.jpcc.8b09263]

Interface and Bulk Standing Waves Drive the Coupling of Plasmonic Nanostar Antennas

Fabris L
2018

Abstract

Finite element simulations of the optical behavior of gold nanostars in water reveal a new view of collective electron cloud oscillations, where localized surface plasmon resonances coexist with coherent delocalized interface waves, i.e., propagating surface plasmons. Gold nanostar spikes long enough to allow propagating polaritons and short enough to resonate with the spherical core serve as the substrate for the observed overlap between propagating modes and localized hot spots. Transverse plane plots reveal bulk polaritons coupled to surface ones. In light of these observations, we explore the mechanisms that drive plasmonic coupling in nanostars from the single spike level to multispiked and multiparticle systems.
File in questo prodotto:
File Dimensione Formato  
tsoulos-fabris-2018-interface-and-bulk-standing-waves-drive-the-coupling-of-plasmonic-nanostar-antennas.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 3.85 MB
Formato Adobe PDF
3.85 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2983159