A successful 3-D finite element code for Maxwell’s equations must include all four kinds of geometrical shapes: tetrahedrons, hexahedrons, triangular prisms, and square-based pyramids. For cells of the first three types, the scalar shape functions, the high-order curl-conforming and divergence-conforming vector bases are well known and available for a long time [1].
Pyramidal versus Tetrahedral Elements in Finite Element Applications / Graglia, Roberto; Petrini, Paolo. - ELETTRONICO. - (2023), pp. 662-662. (Intervento presentato al convegno ICEAA-IEEE APWC 2023 tenutosi a Venice (Italy) nel October 9-13, 2023) [10.1109/ICEAA57318.2023.10297825].
Pyramidal versus Tetrahedral Elements in Finite Element Applications
Roberto Graglia;Paolo Petrini
2023
Abstract
A successful 3-D finite element code for Maxwell’s equations must include all four kinds of geometrical shapes: tetrahedrons, hexahedrons, triangular prisms, and square-based pyramids. For cells of the first three types, the scalar shape functions, the high-order curl-conforming and divergence-conforming vector bases are well known and available for a long time [1].| File | Dimensione | Formato | |
|---|---|---|---|
| 999.pdf accesso riservato 
											Tipologia:
											2a Post-print versione editoriale / Version of Record
										 
											Licenza:
											
											
												Non Pubblico - Accesso privato/ristretto
												
												
												
											
										 
										Dimensione
										136.53 kB
									 
										Formato
										Adobe PDF
									 | 136.53 kB | Adobe PDF | Visualizza/Apri Richiedi una copia | 
| ICEAA_APWC_2023_GRAGLIA_PETRINI.pdf accesso aperto 
											Tipologia:
											2. Post-print / Author's Accepted Manuscript
										 
											Licenza:
											
											
												Pubblico - Tutti i diritti riservati
												
												
												
											
										 
										Dimensione
										239.4 kB
									 
										Formato
										Adobe PDF
									 | 239.4 kB | Adobe PDF | Visualizza/Apri | 
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2983031
			
		
	
	
	
			      	