The electric vehicle (EV) market is growing rapidly due to the necessity of shifting from fossil fuel-based mobility to a more sustainable one. Smart charging paradigms (such as vehicle-to-grid (V2G), vehicle-to-building (V2B), and vehicle-to-home (V2H)) are currently under development, and the existing implementations already enable a bidirectional energy flow between the vehicles and the other systems (grid, buildings, or home appliances, respectively). With regard to grid connection, the increasingly higher penetration of electric vehicles must be carefully analyzed in terms of negative impacts on the power quality; and hence, the effects of electric vehicle charging stations (EVCSs) must be considered. In this work, the interactions of multiple electric vehicle charging stations have been studied through laboratory experiments. Two identical bidirectional DC chargers, with a rated power of 11 kW each, have been supplied by the same voltage source, and the summation phenomenon of the current harmonics of the two chargers (which leads to an amplification of their values) has been analyzed. The experiment consisted of 100 trials, which considered four different combinations of power set-points in order to identify the distribution of values and to find suitable indicators for understanding the trend of the harmonic interaction. By studying the statistical distribution of the Harmonic Summation Index, defined in the paper, the impact of the harmonic distortion caused by the simultaneous charging of multiple electric vehicles has been explored. Based on this study, it can be concluded that the harmonic contributions of the electric vehicle charging stations tend to add up with increasing degrees of similarity of the power set-points, while they tend to cancel out the more the power set-points differ among the chargers.

Interaction among Multiple Electric Vehicle Chargers: Measurements on Harmonics and Power Quality Issues / Mazza, Andrea; Benedetto, Giorgio; Bompard, Ettore; Nobile, Claudia; Pons, Enrico; Tosco, Paolo; Zampolli, Marco; Jaboeuf, Rémi. - In: ENERGIES. - ISSN 1996-1073. - ELETTRONICO. - 16:20(2023), pp. 1-17. [10.3390/en16207051]

Interaction among Multiple Electric Vehicle Chargers: Measurements on Harmonics and Power Quality Issues

Andrea Mazza;Giorgio Benedetto;Ettore Bompard;Enrico Pons;
2023

Abstract

The electric vehicle (EV) market is growing rapidly due to the necessity of shifting from fossil fuel-based mobility to a more sustainable one. Smart charging paradigms (such as vehicle-to-grid (V2G), vehicle-to-building (V2B), and vehicle-to-home (V2H)) are currently under development, and the existing implementations already enable a bidirectional energy flow between the vehicles and the other systems (grid, buildings, or home appliances, respectively). With regard to grid connection, the increasingly higher penetration of electric vehicles must be carefully analyzed in terms of negative impacts on the power quality; and hence, the effects of electric vehicle charging stations (EVCSs) must be considered. In this work, the interactions of multiple electric vehicle charging stations have been studied through laboratory experiments. Two identical bidirectional DC chargers, with a rated power of 11 kW each, have been supplied by the same voltage source, and the summation phenomenon of the current harmonics of the two chargers (which leads to an amplification of their values) has been analyzed. The experiment consisted of 100 trials, which considered four different combinations of power set-points in order to identify the distribution of values and to find suitable indicators for understanding the trend of the harmonic interaction. By studying the statistical distribution of the Harmonic Summation Index, defined in the paper, the impact of the harmonic distortion caused by the simultaneous charging of multiple electric vehicles has been explored. Based on this study, it can be concluded that the harmonic contributions of the electric vehicle charging stations tend to add up with increasing degrees of similarity of the power set-points, while they tend to cancel out the more the power set-points differ among the chargers.
2023
File in questo prodotto:
File Dimensione Formato  
energies-16-07051.pdf

accesso aperto

Descrizione: Articolo pubblicato
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 6.83 MB
Formato Adobe PDF
6.83 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2982977