Solar concentration is the ability to harness solar radiation to increase the temperature of a receiver. The receiver is the component into which a heat transfer fluid can be flowed for an ORC system and produce electricity, or it can be used for high-temperature thermal storage, or even to implement thermochemical cycles. The choice of material is critical to ensure optimal performance and long-lasting operation. It is also essential that such material can operate at high temperatures and high thermal gradients. In short, material identification involves high thermal stresses that result in structural deformation. Different metal alloys were used to verify that the yield strength limit was not exceeded due to thermal stress induced by concentrated solar radiation. The problem was implemented in Matlab starting from the general heat equation. The purpose is to test whether thermal stress exceeds the yield strength, which is the condition in which elastic bonds in the material are changed, causing deformation. The best material identified was Inconel 740H, which had a high yield strength value and the lowest temperature difference. Under extreme working conditions, it can withstand thermally induced shocks.

Solar Disc Concentrator: Material Selection for the Receiver / Perrero, Margherita; Papurello, Davide. - (2023). [10.20944/preprints202308.1223.v1]

Solar Disc Concentrator: Material Selection for the Receiver

Davide Papurello
2023

Abstract

Solar concentration is the ability to harness solar radiation to increase the temperature of a receiver. The receiver is the component into which a heat transfer fluid can be flowed for an ORC system and produce electricity, or it can be used for high-temperature thermal storage, or even to implement thermochemical cycles. The choice of material is critical to ensure optimal performance and long-lasting operation. It is also essential that such material can operate at high temperatures and high thermal gradients. In short, material identification involves high thermal stresses that result in structural deformation. Different metal alloys were used to verify that the yield strength limit was not exceeded due to thermal stress induced by concentrated solar radiation. The problem was implemented in Matlab starting from the general heat equation. The purpose is to test whether thermal stress exceeds the yield strength, which is the condition in which elastic bonds in the material are changed, causing deformation. The best material identified was Inconel 740H, which had a high yield strength value and the lowest temperature difference. Under extreme working conditions, it can withstand thermally induced shocks.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2982687
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo