Every graph of bounded degree endowed with the counting measure satisfies a local version of L-p-Poincare inequality, p is an element of [1, infinity]. We show that on graphs which are trees the Poincare constant grows at least exponentially with the radius of balls. On the other hand, we prove that, surprisingly, trees endowed with a flow measure support a global version of L-p-Poincare inequality, despite the fact that they are nondoubling measures of exponential growth.

Poincaré inequalities on graphs / Levi, M.; Santagati, F.; Tabacco, A.; Vallarino, M.. - In: ANALYSIS MATHEMATICA. - ISSN 0133-3852. - 49:2(2023), pp. 529-544. [10.1007/s10476-023-0215-5]

Poincaré inequalities on graphs

Tabacco A.;Vallarino M.
2023

Abstract

Every graph of bounded degree endowed with the counting measure satisfies a local version of L-p-Poincare inequality, p is an element of [1, infinity]. We show that on graphs which are trees the Poincare constant grows at least exponentially with the radius of balls. On the other hand, we prove that, surprisingly, trees endowed with a flow measure support a global version of L-p-Poincare inequality, despite the fact that they are nondoubling measures of exponential growth.
File in questo prodotto:
File Dimensione Formato  
Poincaré-13-12-22.pdf

Open Access dal 01/04/2024

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Creative commons
Dimensione 387.77 kB
Formato Adobe PDF
387.77 kB Adobe PDF Visualizza/Apri
s10476-023-0215-5.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 223.54 kB
Formato Adobe PDF
223.54 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2982605