The physical and mechanical characteristics of a novel mortar that uses recycled PET powder as a replacement for natural sand are examined in this paper. This study specifically looks at the impacts of replacing recycled polyethylene terephthalate (PET) powder in place of fine aggregates in mortars. To create five distinct mortar mixes, recycled PET powder was substituted in varying proportions (0%-30% by volume of the sand). The investigation focuses on the physical and mechanical characteristics of the material, including density, slump, water absorption, ultrasonic pulse velocity, flexural and compressive strength, and microstructural and interface characterization. Results reveal that the substitution of recycled PET powder reduces slump, compressive strength, ultrasonic pulse velocity, dry and wet density, and slump, whereas flexural strength and fracture energy exhibit the reverse tendency. The slump variation indicates the controllable workability of the mortar in the fresh state. The latter feature is quite important for the application of such a material where flowability is a dominating parameter, e.g., 3D printing. Two data-driven models for the compressive and flexural strength reduction factors as a function of the substitution ratio based on symbolic regression techniques are proposed using the findings of this study in conjunction with data from the literature.

Mortar with Substituted Recycled PET Powder: Experimental Characterization and Data-Driven Strength Predictive Models / Xiong, Beibei; Falliano, Devid; Restuccia, Luciana; DI TRAPANI, Fabio; Demartino, Cristoforo; Marano, GIUSEPPE CARLO. - In: JOURNAL OF MATERIALS IN CIVIL ENGINEERING. - ISSN 0899-1561. - 35:9(2023). [10.1061/JMCEE7.MTENG-16065]

Mortar with Substituted Recycled PET Powder: Experimental Characterization and Data-Driven Strength Predictive Models

Beibei Xiong;Devid Falliano;Luciana Restuccia;Fabio Di Trapani;Giuseppe Carlo Marano
2023

Abstract

The physical and mechanical characteristics of a novel mortar that uses recycled PET powder as a replacement for natural sand are examined in this paper. This study specifically looks at the impacts of replacing recycled polyethylene terephthalate (PET) powder in place of fine aggregates in mortars. To create five distinct mortar mixes, recycled PET powder was substituted in varying proportions (0%-30% by volume of the sand). The investigation focuses on the physical and mechanical characteristics of the material, including density, slump, water absorption, ultrasonic pulse velocity, flexural and compressive strength, and microstructural and interface characterization. Results reveal that the substitution of recycled PET powder reduces slump, compressive strength, ultrasonic pulse velocity, dry and wet density, and slump, whereas flexural strength and fracture energy exhibit the reverse tendency. The slump variation indicates the controllable workability of the mortar in the fresh state. The latter feature is quite important for the application of such a material where flowability is a dominating parameter, e.g., 3D printing. Two data-driven models for the compressive and flexural strength reduction factors as a function of the substitution ratio based on symbolic regression techniques are proposed using the findings of this study in conjunction with data from the literature.
File in questo prodotto:
File Dimensione Formato  
Mortar with Substituted Recycled PET Powder_ Experimental Characterization and Data-Driven Strength Predictive Models.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 3.89 MB
Formato Adobe PDF
3.89 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2982253