New sustainable materialsproduced by green processing routes arerequired in order to meet the concepts of circular economy. The replacementof insulating materials comprising flammable synthetic polymers bybio-based materials represents a potential opportunity to achievethis task. In this paper, low-density and flame-retardant (FR) porousfiber networks are prepared by assembling Layer-by-Layer (LbL)-functionalizedcellulose fibers by means of freeze-drying. The LbL coating, encompassingchitosan and sodium hexametaphosphate, enables the formation of aself-sustained porous structure by enhancing fiber-fiber interactionsduring the freeze-drying process. Fiber networks prepared from 3 Bi-Layer(BL)-coated fibers contain 80% wt of cellulose and can easily self-extinguishthe flame during flammability tests in vertical configuration whiledisplaying extremely low combustion rates in forced combustion tests.Smoke release is 1 order of magnitude lower than that of commerciallyavailable polyurethane foams. Such high FR efficiency is ascribedto the homogeneity of the deposited assembly, which produces a protectiveexoskeleton at the air/cellulose interface. The results reported inthis paper represent an excellent opportunity for the developmentof fire-safe materials, encompassing natural components where sustainabilityand performance are maximized.

Layer-by-Layer-Coated Cellulose Fibers Enable the Production of Porous, Flame-Retardant, and Lightweight Materials / Marcioni, Massimo; Zhao, Mengxiao; Maddalena, Lorenza; Pettersson, Torbjörn; Avolio, Roberto; Castaldo, Rachele; Wågberg, Lars; Carosio, Federico. - In: ACS APPLIED MATERIALS & INTERFACES. - ISSN 1944-8252. - 15:30(2023), pp. 36811-36821. [10.1021/acsami.3c06652]

Layer-by-Layer-Coated Cellulose Fibers Enable the Production of Porous, Flame-Retardant, and Lightweight Materials

Massimo Marcioni;Lorenza Maddalena;Federico Carosio
2023

Abstract

New sustainable materialsproduced by green processing routes arerequired in order to meet the concepts of circular economy. The replacementof insulating materials comprising flammable synthetic polymers bybio-based materials represents a potential opportunity to achievethis task. In this paper, low-density and flame-retardant (FR) porousfiber networks are prepared by assembling Layer-by-Layer (LbL)-functionalizedcellulose fibers by means of freeze-drying. The LbL coating, encompassingchitosan and sodium hexametaphosphate, enables the formation of aself-sustained porous structure by enhancing fiber-fiber interactionsduring the freeze-drying process. Fiber networks prepared from 3 Bi-Layer(BL)-coated fibers contain 80% wt of cellulose and can easily self-extinguishthe flame during flammability tests in vertical configuration whiledisplaying extremely low combustion rates in forced combustion tests.Smoke release is 1 order of magnitude lower than that of commerciallyavailable polyurethane foams. Such high FR efficiency is ascribedto the homogeneity of the deposited assembly, which produces a protectiveexoskeleton at the air/cellulose interface. The results reported inthis paper represent an excellent opportunity for the developmentof fire-safe materials, encompassing natural components where sustainabilityand performance are maximized.
File in questo prodotto:
File Dimensione Formato  
acsami.3c06652.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 11.42 MB
Formato Adobe PDF
11.42 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2981934