Unsymmetrical ditopic ligands can self-assemble into reduced-symmetry Pd2L4 metallo-cages with anisotropic cavities, with implications for high specificity and affinity guest-binding. Mixtures of cage isomers can form, however, resulting in undesirable system heterogeneity. It is paramount to be able to design components that preferentially form a single isomer. Previous data suggested that computational methods could predict with reasonable accuracy whether unsymmetrical ligands would preferentially self-assemble into single cage isomers under constraints of geometrical mismatch. We successfully apply a collaborative computational and experimental workflow to mitigate costly trial-and-error synthetic approaches. Our rapid computational workflow constructs unsymmetrical ligands and their Pd2L4 cage isomers, ranking the likelihood for exclusively forming cis-Pd2L4 assemblies. From this narrowed search space, we successfully synthesised four new, low-symmetry, cis-Pd2L4 cages.

High-Throughput Computational Evaluation of Low Symmetry Pd2L4 Cages to Aid in System Design** / Tarzia, A.; Lewis, J. E. M.; Jelfs, K. E.. - In: ANGEWANDTE CHEMIE. INTERNATIONAL EDITION. - ISSN 1433-7851. - 60:38(2021), pp. 20879-20887. [10.1002/anie.202106721]

High-Throughput Computational Evaluation of Low Symmetry Pd2L4 Cages to Aid in System Design**

Tarzia A.;
2021

Abstract

Unsymmetrical ditopic ligands can self-assemble into reduced-symmetry Pd2L4 metallo-cages with anisotropic cavities, with implications for high specificity and affinity guest-binding. Mixtures of cage isomers can form, however, resulting in undesirable system heterogeneity. It is paramount to be able to design components that preferentially form a single isomer. Previous data suggested that computational methods could predict with reasonable accuracy whether unsymmetrical ligands would preferentially self-assemble into single cage isomers under constraints of geometrical mismatch. We successfully apply a collaborative computational and experimental workflow to mitigate costly trial-and-error synthetic approaches. Our rapid computational workflow constructs unsymmetrical ligands and their Pd2L4 cage isomers, ranking the likelihood for exclusively forming cis-Pd2L4 assemblies. From this narrowed search space, we successfully synthesised four new, low-symmetry, cis-Pd2L4 cages.
File in questo prodotto:
File Dimensione Formato  
Angew Chem Int Ed - 2021 - Tarzia.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 2.01 MB
Formato Adobe PDF
2.01 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2981640