Metal halide perovskites are materials that show unique characteristics for photovoltaics and light emission. Amplified spontaneous emission and stimulated emission has been shown with these materials, together with electroluminescence in light-emitting diodes and light-emitting transistors. An important achievement that combine stimulated emission and electroluminescence could be the fabrication of electrically driven metal halide perovskite lasers.In this work, the integration of metal halide perovskite light-emitting field-effect transistors with photonic microcavities is proposed. This can lead to the engineering of electrically driven lasers. The microcavities have been designed in order to have the cavity mode at 750 nm, which is the peak wavelength of the electrolumi-nescent spectrum of recently reported MaPbI3-based electroluminescent devices. The optical properties of the photonic microcavities have been simulated by means of the transfer matrix method, considering the wavelength dependent refractive indexes of all the materials involved. The material for the gate is indium tin oxide, while different materials, either inorganic or organic, have been considered for the microcavity architectures.

Microcavities integrated in metal halide perovskite light-emitting field-effect transistors / Scotognella, F. - In: RESULTS IN PHYSICS. - ISSN 2211-3797. - ELETTRONICO. - 44:(2023), pp. 1-5. [10.1016/j.rinp.2022.106168]

Microcavities integrated in metal halide perovskite light-emitting field-effect transistors

Scotognella, F
2023

Abstract

Metal halide perovskites are materials that show unique characteristics for photovoltaics and light emission. Amplified spontaneous emission and stimulated emission has been shown with these materials, together with electroluminescence in light-emitting diodes and light-emitting transistors. An important achievement that combine stimulated emission and electroluminescence could be the fabrication of electrically driven metal halide perovskite lasers.In this work, the integration of metal halide perovskite light-emitting field-effect transistors with photonic microcavities is proposed. This can lead to the engineering of electrically driven lasers. The microcavities have been designed in order to have the cavity mode at 750 nm, which is the peak wavelength of the electrolumi-nescent spectrum of recently reported MaPbI3-based electroluminescent devices. The optical properties of the photonic microcavities have been simulated by means of the transfer matrix method, considering the wavelength dependent refractive indexes of all the materials involved. The material for the gate is indium tin oxide, while different materials, either inorganic or organic, have been considered for the microcavity architectures.
File in questo prodotto:
File Dimensione Formato  
Scotognella - 2022 - Microcavities integrated in metal halide perovskit.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 770.88 kB
Formato Adobe PDF
770.88 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2981219