Following the emergence of Elastic Optical Networks (EONs), Machine Learning (ML) has been intensively investigated as a promising methodology to address complex network management tasks, including, e.g., Quality of Transmission (QoT) estimation, fault management, and automatic adjustment of transmission parameters. Though several ML-based solutions for specific tasks have been proposed, how to integrate the outcome of such ML approaches inside Routing and Spectrum Assignment (RSA) models (which address the fundamental planning problem in EONs) is still an open research problem. In this study, we propose a dual-stage iterative RSA optimization framework that incorporates the QoT estimations provided by a ML regressor, used to define lightpaths' reach constraints, into a Mixed Integer Linear Programming (MILP) formulation. The first stage minimizes the overall spectrum occupation, whereas the second stage maximizes the minimum inter-channel spacing between neighbor channels, without increasing the overall spectrum occupation obtained in the previous stage. During the second stage, additional interference constraints are generated, and these constraints are then added to the MILP at the next iteration round to exclude those lightpaths combinations that would exhibit unacceptable QoT. Our illustrative numerical results on realistic EON instances show that the proposed ML-assisted framework achieves spectrum occupation savings up to 52.4% (around 33% on average) in comparison to a traditional MILP-based RSA framework that uses conservative reach constraints based on margined analytical models.

Dual-Stage Planning for Elastic Optical Networks Integrating Machine-Learning-Assisted QoT Estimation / Salani, M; Rottondi, C; Cere, L; Tornatore, M. - In: IEEE-ACM TRANSACTIONS ON NETWORKING. - ISSN 1063-6692. - ELETTRONICO. - 31:3(2023), pp. 1293-1307. [10.1109/TNET.2022.3213970]

Dual-Stage Planning for Elastic Optical Networks Integrating Machine-Learning-Assisted QoT Estimation

Rottondi, C;
2023

Abstract

Following the emergence of Elastic Optical Networks (EONs), Machine Learning (ML) has been intensively investigated as a promising methodology to address complex network management tasks, including, e.g., Quality of Transmission (QoT) estimation, fault management, and automatic adjustment of transmission parameters. Though several ML-based solutions for specific tasks have been proposed, how to integrate the outcome of such ML approaches inside Routing and Spectrum Assignment (RSA) models (which address the fundamental planning problem in EONs) is still an open research problem. In this study, we propose a dual-stage iterative RSA optimization framework that incorporates the QoT estimations provided by a ML regressor, used to define lightpaths' reach constraints, into a Mixed Integer Linear Programming (MILP) formulation. The first stage minimizes the overall spectrum occupation, whereas the second stage maximizes the minimum inter-channel spacing between neighbor channels, without increasing the overall spectrum occupation obtained in the previous stage. During the second stage, additional interference constraints are generated, and these constraints are then added to the MILP at the next iteration round to exclude those lightpaths combinations that would exhibit unacceptable QoT. Our illustrative numerical results on realistic EON instances show that the proposed ML-assisted framework achieves spectrum occupation savings up to 52.4% (around 33% on average) in comparison to a traditional MILP-based RSA framework that uses conservative reach constraints based on margined analytical models.
File in questo prodotto:
File Dimensione Formato  
Two_Stage_Frequency_Based_RSA___REVISION (11).pdf

accesso aperto

Descrizione: articolo principale
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 2.81 MB
Formato Adobe PDF
2.81 MB Adobe PDF Visualizza/Apri
Dual-Stage_Planning_for_Elastic_Optical_Networks_Integrating_Machine-Learning-Assisted_QoT_Estimation.pdf

non disponibili

Descrizione: articolo principale versione editoriale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 2.92 MB
Formato Adobe PDF
2.92 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2981206