Supercapacitors (SCs) are considered a promising alternative to batteries to power up portable and wearable devices. Among different categories of materials for SCs, carbon nanofibers (CNFs) are particularly appealing for their electrochemical, morphological, and mechanical properties, coupled with the ease of synthesis. Electrospinning is a simple and low-cost technique to prepare the polymer-based precursors for CNFs, allowing to obtain fibers with a tunable morphology and a diameter in the nanometer range. However, even if electrospun CNFs were intensely studied over the years, in the literature there is a lack of information regarding the optimization of the thermal treatment to prepare bare CNFs with high specific capacitance (C s). Herein, a systematic study on the optimization of the stabilization and carbonization temperatures for electrospun CNFs prepared from polyacrylonirtile is reported, achieving a maximum C s of 49 F g−1 at 0.5 A g−1 in a symmetrical SC device based on 1 m H2SO4 electrolyte. Aspects related to the specific surface area, nitrogen doping, and carbon microstructure are examined concerning the different thermal treatments, allowing to define structure–property–function relationships in these capacitive nanoarchitectures.
Assessing the Effect of Stabilization and Carbonization Temperatures on Electrochemical Performance of Electrospun Carbon Nanofibers from Polyacrylonitrile / Boll, Felix; Crisci, Matteo; Merola, Leonardo; Lamberti, Francesco; Smarsly, Bernd; Gatti, Teresa. - In: ADVANCED ENERGY AND SUSTAINABILITY RESEARCH. - ISSN 2699-9412. - (2023). [10.1002/aesr.202300121]
Assessing the Effect of Stabilization and Carbonization Temperatures on Electrochemical Performance of Electrospun Carbon Nanofibers from Polyacrylonitrile
Teresa Gatti
2023
Abstract
Supercapacitors (SCs) are considered a promising alternative to batteries to power up portable and wearable devices. Among different categories of materials for SCs, carbon nanofibers (CNFs) are particularly appealing for their electrochemical, morphological, and mechanical properties, coupled with the ease of synthesis. Electrospinning is a simple and low-cost technique to prepare the polymer-based precursors for CNFs, allowing to obtain fibers with a tunable morphology and a diameter in the nanometer range. However, even if electrospun CNFs were intensely studied over the years, in the literature there is a lack of information regarding the optimization of the thermal treatment to prepare bare CNFs with high specific capacitance (C s). Herein, a systematic study on the optimization of the stabilization and carbonization temperatures for electrospun CNFs prepared from polyacrylonirtile is reported, achieving a maximum C s of 49 F g−1 at 0.5 A g−1 in a symmetrical SC device based on 1 m H2SO4 electrolyte. Aspects related to the specific surface area, nitrogen doping, and carbon microstructure are examined concerning the different thermal treatments, allowing to define structure–property–function relationships in these capacitive nanoarchitectures.File | Dimensione | Formato | |
---|---|---|---|
Adv Energy and Sustain Res - 2023 - Boll.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
2.36 MB
Formato
Adobe PDF
|
2.36 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2981204