An experimental study was carried out to assess the performance of a tubular absorber enhanced with Raschig Rings (RR) porous medium for CSP applications. Two alternative designs with different porous lengths of 20 and 40 mm were fabricated and compared with two conventional tube designs with and without surface coating. Several tests were conducted at the solar furnace SF60 of the Plataforma Solar de Almeria (PSA) within the international access program of the SFERA III project, financed by the EU. The main scope of the study was to provide comprehensive detail on the hydraulic and thermal characteristics of the modified tube for further optimization and deployment in point-focusing solar systems. Therefore, evaluations were directed to determine the effects of each design on the pressure losses and the tube wall temperature, as well as on the useful heat gain. Results indicated that although the porous inserts rise the pressure losses through the fluid flow, the higher wetted area in the porous zone for heat transfer between the air and the heated plate reduces the wall tem-perature significantly. Moreover, applying the PYROMARK 2500 as the surface coating has a high influence on increasing solar absorption and reducing thermal losses. Further investigations revealed that the integration of the porous medium changes the temperature profile formed all over the tube, transforming a Gaussian shape in the plain pipes to a spline shape with two peaks in the modified tubes. Increasing the energy and exergy effi-ciencies of the solar absorber up to 30-50% and 60-70%, respectively, demonstrated the improving effects of the proposed porous material for future applications in the solar industry.

Experimental investigation on an air tubular absorber enhanced with Raschig Rings porous medium in a solar furnace / Ebadi, H; Cammi, A; Difonzo, R; Rodriguez, J; Savoldi, L. - In: APPLIED ENERGY. - ISSN 0306-2619. - 342:121189(2023). [10.1016/j.apenergy.2023.121189]

Experimental investigation on an air tubular absorber enhanced with Raschig Rings porous medium in a solar furnace

Ebadi, H;Difonzo, R;Savoldi, L
2023

Abstract

An experimental study was carried out to assess the performance of a tubular absorber enhanced with Raschig Rings (RR) porous medium for CSP applications. Two alternative designs with different porous lengths of 20 and 40 mm were fabricated and compared with two conventional tube designs with and without surface coating. Several tests were conducted at the solar furnace SF60 of the Plataforma Solar de Almeria (PSA) within the international access program of the SFERA III project, financed by the EU. The main scope of the study was to provide comprehensive detail on the hydraulic and thermal characteristics of the modified tube for further optimization and deployment in point-focusing solar systems. Therefore, evaluations were directed to determine the effects of each design on the pressure losses and the tube wall temperature, as well as on the useful heat gain. Results indicated that although the porous inserts rise the pressure losses through the fluid flow, the higher wetted area in the porous zone for heat transfer between the air and the heated plate reduces the wall tem-perature significantly. Moreover, applying the PYROMARK 2500 as the surface coating has a high influence on increasing solar absorption and reducing thermal losses. Further investigations revealed that the integration of the porous medium changes the temperature profile formed all over the tube, transforming a Gaussian shape in the plain pipes to a spline shape with two peaks in the modified tubes. Increasing the energy and exergy effi-ciencies of the solar absorber up to 30-50% and 60-70%, respectively, demonstrated the improving effects of the proposed porous material for future applications in the solar industry.
File in questo prodotto:
File Dimensione Formato  
Experimental+investigation+on+an+air+tubular+absorber+enhanced+with+Raschig+Rings+porous+medium+in+a+solar+furnace_compressed.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 1.03 MB
Formato Adobe PDF
1.03 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2980773