Abstract: This study validated the utilization of triacylglycerides (TAGs) by Pseudomonas mendocina CH50, a wild type strain, resulting in the production of novel mcl-PHAs with unique physical properties. A PHA yield of 58% dcw was obtained using 20 g/L of coconut oil. Chemical and structural characterisation confirmed that the mcl-PHA produced was a terpolymer comprising of three different repeating monomer units, 3-hydroxyoctanoate, 3-hydroxydecanoate and 3-hydroxydodecanoate or P(3HO-3HD-3HDD). Bearing in mind the potential of P(3HO-3HD-3HDD) in biomedical research, especially in neural tissue engineering, in vitro biocompatibility studies were carried out using NG108-15 (neuronal) cells. Cell viability data confirmed that P(3HO-3HD-3HDD) supported the attachment and proliferation of NG108-15 and was therefore confirmed to be biocompatible in nature and suitable for neural regeneration. [Figure not available: see fulltext.].
Biosynthesis and characterization of a novel, biocompatible medium chain length polyhydroxyalkanoate by Pseudomonas mendocina CH50 using coconut oil as the carbon source / Basnett, P.; Marcello, E.; Lukasiewicz, B.; Panchal, B.; Nigmatullin, R.; Knowles, J. C.; Roy, I.. - In: JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE. - ISSN 0957-4530. - 29:12(2018), p. 179. [10.1007/s10856-018-6183-9]
Biosynthesis and characterization of a novel, biocompatible medium chain length polyhydroxyalkanoate by Pseudomonas mendocina CH50 using coconut oil as the carbon source
Marcello E.;
2018
Abstract
Abstract: This study validated the utilization of triacylglycerides (TAGs) by Pseudomonas mendocina CH50, a wild type strain, resulting in the production of novel mcl-PHAs with unique physical properties. A PHA yield of 58% dcw was obtained using 20 g/L of coconut oil. Chemical and structural characterisation confirmed that the mcl-PHA produced was a terpolymer comprising of three different repeating monomer units, 3-hydroxyoctanoate, 3-hydroxydecanoate and 3-hydroxydodecanoate or P(3HO-3HD-3HDD). Bearing in mind the potential of P(3HO-3HD-3HDD) in biomedical research, especially in neural tissue engineering, in vitro biocompatibility studies were carried out using NG108-15 (neuronal) cells. Cell viability data confirmed that P(3HO-3HD-3HDD) supported the attachment and proliferation of NG108-15 and was therefore confirmed to be biocompatible in nature and suitable for neural regeneration. [Figure not available: see fulltext.].File | Dimensione | Formato | |
---|---|---|---|
Basnett2018_Article_BiosynthesisAndCharacterizatio.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.42 MB
Formato
Adobe PDF
|
1.42 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2980765