Exploiting the availability of the largest collection of patient-derived xenografts from metastatic colorectal cancer annotated for a response to therapies, this manuscript aims to characterize the biological phenomenon from a mathematical point of view. In particular, we design an experiment in order to investigate how genes interact with each other. By using a shallow neural network model, we find reduced feature subspaces where the resistance phenomenon may be much easier to understand and analyze.

Understanding Cancer Phenomenon at Gene Expression Level by using a Shallow Neural Network Chain / Barbiero, P.; Bertotti, A.; Ciravegna, G.; Cirrincione, G.; Piccolo, E.; Tonda, A. (SMART INNOVATION, SYSTEMS AND TECHNOLOGIES). - In: Neural Approaches to Dynamics of Signal Exchanges / Esposito A., Faundez-Zanuy M., Morabito F.C., Pasero E.. - Singapore : Springer, 2020. - ISBN 978-981-13-8949-8. - pp. 281-290 [10.1007/978-981-13-8950-4_26]

Understanding Cancer Phenomenon at Gene Expression Level by using a Shallow Neural Network Chain

Ciravegna G.;Cirrincione G.;Piccolo E.;Tonda A.
2020

Abstract

Exploiting the availability of the largest collection of patient-derived xenografts from metastatic colorectal cancer annotated for a response to therapies, this manuscript aims to characterize the biological phenomenon from a mathematical point of view. In particular, we design an experiment in order to investigate how genes interact with each other. By using a shallow neural network model, we find reduced feature subspaces where the resistance phenomenon may be much easier to understand and analyze.
2020
978-981-13-8949-8
978-981-13-8950-4
Neural Approaches to Dynamics of Signal Exchanges
File in questo prodotto:
File Dimensione Formato  
978-981-13-8950-4_26.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 362.64 kB
Formato Adobe PDF
362.64 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2980676