The iron-based compounds of the so-called 12442 family are very peculiar in various respects. They originate from the intergrowth of 122 and 1111 building blocks, display a large in-plane vs out-of-plane anisotropy, possess double layers of FeAs separated by insulating layers, and are generally very similar to double-layer cuprates. Moreover, they are stoichiometric superconductors because of an intrinsic hole doping. Establishing their superconducting properties, and in particular the symmetry of the order parameter, is thus particularly relevant in order to understand to what extent these compounds can be considered as the iron-based counterpart of cuprates. In this work, we review the results of various techniques from the current literature and compare them with ours, obtained in Rb–12442 by combining point-contact Andreev reflection spectroscopy and coplanar waveguide resonator measurements of the superfluid density. It turns out that the compound possesses at least two gaps, one of which is certainly nodal. The compatibility of this result with the theoretically allowed gap structures, as well as with the other results in literature, is discussed in detail.
Spectroscopic studies of the superconducting gap in the 12442 family of iron-based compounds (Review article) / Piatti, Erik; Torsello, Daniele; Ghigo, Gianluca; Daghero, Dario. - In: LOW TEMPERATURE PHYSICS. - ISSN 1063-777X. - 49:7(2023), pp. 770-785. [10.1063/10.0019688]
Spectroscopic studies of the superconducting gap in the 12442 family of iron-based compounds (Review article)
Erik Piatti;Daniele Torsello;Gianluca Ghigo;Dario Daghero
2023
Abstract
The iron-based compounds of the so-called 12442 family are very peculiar in various respects. They originate from the intergrowth of 122 and 1111 building blocks, display a large in-plane vs out-of-plane anisotropy, possess double layers of FeAs separated by insulating layers, and are generally very similar to double-layer cuprates. Moreover, they are stoichiometric superconductors because of an intrinsic hole doping. Establishing their superconducting properties, and in particular the symmetry of the order parameter, is thus particularly relevant in order to understand to what extent these compounds can be considered as the iron-based counterpart of cuprates. In this work, we review the results of various techniques from the current literature and compare them with ours, obtained in Rb–12442 by combining point-contact Andreev reflection spectroscopy and coplanar waveguide resonator measurements of the superfluid density. It turns out that the compound possesses at least two gaps, one of which is certainly nodal. The compatibility of this result with the theoretically allowed gap structures, as well as with the other results in literature, is discussed in detail.File | Dimensione | Formato | |
---|---|---|---|
Piatti Spectroscopic studies of the superconducting gap in the 12442 family of iron-based compounds Low Temp. Phys. 49, 770 (2023).pdf
accesso riservato
Descrizione: Articolo principale - versione editoriale
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
4.64 MB
Formato
Adobe PDF
|
4.64 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
LTP23-RE-00079.pdf
accesso aperto
Descrizione: Articolo principale - accepted manuscript
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Creative commons
Dimensione
4.36 MB
Formato
Adobe PDF
|
4.36 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2980242