Molten salt systems have become of growing interest in the energy industry due to a wide range of applications (concentrated solar power systems, energy storage, Generation IV fission reactors, and high magnetic field fusion reactors). Because of the high temperature that characterizes such materials, radiative heat transfer (RHT) may become a nonnegligible heat transfer mechanism in molten salt components. In this paper, an investigation of FLiBe RHT has been conducted, with a focus on Affordable, Robust, Compact (ARC)-class fusion reactors, a preconceptual design proposed by Commonwealth Fusion Systems and the Plasma Science and Fusion Center. This class of reactors largely employs FLiBe molten salt due to its thermal and neutronic properties. The reactor is characterized by high temperatures, and its 0.5-m-thick liquid immersion blanket is a component where RHT contribution to the temperature distribution is yet to be evaluated. Therefore, this study is the first work that quantifies the contribution of RHT in ARC-class reactor FLiBe systems. FLiBe optical property spectral-banding assessment is carried out, and the impact of RHT in FLiBe systems is assessed in operational ARC-class scenarios through computational fluid dynamics models by taking advantage of COMSOL (R) Multiphysics. Heat transfer, thermal-dependent properties, and buoyancy effects are considered in a comparison between scenarios with and without RHT modeling. The flow field in the tank is unaffected by RHT effects, even when considering buoyancy effects. The external layer of the vacuum vessel shows an average decrease in the temperature of 5.4 K and an average decrease in temperature on the surface in contact with the FLiBe tank of 8.1 K. Results indicate that for ARC-class reactors, RHT phenomena are negligible (<1% increase in heat transfer) in operational conditions.

Impact Assessment of Radiative Heat Transport in ARC-Class Reactor FLiBe Liquid Immersion Blanket / Ferrero, Gabriele; Testoni, Raffaella; Zucchetti, Massimo. - In: NUCLEAR SCIENCE AND ENGINEERING. - ISSN 0029-5639. - ELETTRONICO. - (2023), pp. 1-16. [10.1080/00295639.2023.2219815]

Impact Assessment of Radiative Heat Transport in ARC-Class Reactor FLiBe Liquid Immersion Blanket

Gabriele Ferrero;Raffaella Testoni;Massimo Zucchetti
2023

Abstract

Molten salt systems have become of growing interest in the energy industry due to a wide range of applications (concentrated solar power systems, energy storage, Generation IV fission reactors, and high magnetic field fusion reactors). Because of the high temperature that characterizes such materials, radiative heat transfer (RHT) may become a nonnegligible heat transfer mechanism in molten salt components. In this paper, an investigation of FLiBe RHT has been conducted, with a focus on Affordable, Robust, Compact (ARC)-class fusion reactors, a preconceptual design proposed by Commonwealth Fusion Systems and the Plasma Science and Fusion Center. This class of reactors largely employs FLiBe molten salt due to its thermal and neutronic properties. The reactor is characterized by high temperatures, and its 0.5-m-thick liquid immersion blanket is a component where RHT contribution to the temperature distribution is yet to be evaluated. Therefore, this study is the first work that quantifies the contribution of RHT in ARC-class reactor FLiBe systems. FLiBe optical property spectral-banding assessment is carried out, and the impact of RHT in FLiBe systems is assessed in operational ARC-class scenarios through computational fluid dynamics models by taking advantage of COMSOL (R) Multiphysics. Heat transfer, thermal-dependent properties, and buoyancy effects are considered in a comparison between scenarios with and without RHT modeling. The flow field in the tank is unaffected by RHT effects, even when considering buoyancy effects. The external layer of the vacuum vessel shows an average decrease in the temperature of 5.4 K and an average decrease in temperature on the surface in contact with the FLiBe tank of 8.1 K. Results indicate that for ARC-class reactors, RHT phenomena are negligible (<1% increase in heat transfer) in operational conditions.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2979946
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo