The influence of increasing pressure on nonpremixed syngas/air turbulent jet flames is numerically investigated using large eddy simulations in conjunction with a steady laminar flamelet approach. The applicability of the steady flamelet approach is assessed through an extensive parametric study of laminar counterflow flames and tangential stretching rate analysis on target flame structures at different pressures. Two sets of large eddy simulations, exploring pressure values up to 10 atm, are carried out. The first one (series A) is characterized by a constant jet Reynolds number, while the second one (series B) is characterized by a constant jet inlet velocity. Both campaigns show narrower flame brushes and reduced radical concentrations with increasing pressure. While for series A the flame length is not sensitive to pressure, a longer flame brush is noticed for series B, being mainly caused by the increased mass flow rate. The sensitivity of the local flame behavior to pressure, such as the OH layer thickness and position, is compared to the available experimental results, showing similar trends with a satisfactory agreement.
Large Eddy Simulation on the Effects of Pressure on Syngas/Air Turbulent Nonpremixed Jet Flames / Ciottoli, P. P.; Lee, B. J.; Lapenna, P. E.; Malpica Galassi, R.; Hernandez-Perez, F. E.; Martelli, E.; Valorani, M.; Im, H. G.. - In: COMBUSTION SCIENCE AND TECHNOLOGY. - ISSN 0010-2202. - (2019), pp. 1-34. [10.1080/00102202.2019.1632300]
Large Eddy Simulation on the Effects of Pressure on Syngas/Air Turbulent Nonpremixed Jet Flames
Martelli E.;
2019
Abstract
The influence of increasing pressure on nonpremixed syngas/air turbulent jet flames is numerically investigated using large eddy simulations in conjunction with a steady laminar flamelet approach. The applicability of the steady flamelet approach is assessed through an extensive parametric study of laminar counterflow flames and tangential stretching rate analysis on target flame structures at different pressures. Two sets of large eddy simulations, exploring pressure values up to 10 atm, are carried out. The first one (series A) is characterized by a constant jet Reynolds number, while the second one (series B) is characterized by a constant jet inlet velocity. Both campaigns show narrower flame brushes and reduced radical concentrations with increasing pressure. While for series A the flame length is not sensitive to pressure, a longer flame brush is noticed for series B, being mainly caused by the increased mass flow rate. The sensitivity of the local flame behavior to pressure, such as the OH layer thickness and position, is compared to the available experimental results, showing similar trends with a satisfactory agreement.File | Dimensione | Formato | |
---|---|---|---|
Large Eddy Simulation on the Effects of Pressure on Syngas Air Turbulent Nonpremixed Jet Flames.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
6.74 MB
Formato
Adobe PDF
|
6.74 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2979866