The vast majority of existing wave energy converter (WEC) technologies are designed to absorb wave power through a single mode of motion, often constraining the device on the remaining degrees-of-freedom (DoF) or neglecting their effects on the system dynamics and resulting power production. This paper introduces a novel multi DoF WEC designed to harvest wave power through the mechanical coupling of a gyropendulum system, parametrically excited by a moored floater. The gyropendulum mechanism is a hybrid technology that can incorporate, in a single body, the properties of both pendulum and gyroscope mechanics, ensuring effective energy har-vesting in virtually every operational condition, i.e. making it suitable for multidirectional sea wave scatters. The gyropendulum versatility is enhanced during intermediate wave directions, in which both pitch and roll rotation are induced on the floater, prompting both gyroscopic effects, and the elasticity reaction forces on the mechanism. Relaying on such properties, the swinging omnidirectional (SWINGO) device can absorb wave power independently from the excited DoF, and therefore guaranteeing energy extraction independently of the incoming wave direction. System analysis and dynamic properties of the SWINGO system are computed by performing sensitivity studies, through the variation of both geometric properties and control conditions of the gyropendulum mechanism. For these purposes, we apply impedance-matching theory to explore the dynamic characteristics of the system under controlled conditions, and its performance in terms of power, making explicit emphasis in its main characteristics.
SWINGO: Conceptualisation, modelling, and control of a swinging omnidirectional wave energy converter / Carapellese, F; Pasta, E; Sirigu, Sa; Faedo, N. - In: MECHANICAL SYSTEMS AND SIGNAL PROCESSING. - ISSN 0888-3270. - 197:(2023). [10.1016/j.ymssp.2023.110356]
SWINGO: Conceptualisation, modelling, and control of a swinging omnidirectional wave energy converter
Carapellese, F;Pasta, E;Sirigu, SA;Faedo, N
2023
Abstract
The vast majority of existing wave energy converter (WEC) technologies are designed to absorb wave power through a single mode of motion, often constraining the device on the remaining degrees-of-freedom (DoF) or neglecting their effects on the system dynamics and resulting power production. This paper introduces a novel multi DoF WEC designed to harvest wave power through the mechanical coupling of a gyropendulum system, parametrically excited by a moored floater. The gyropendulum mechanism is a hybrid technology that can incorporate, in a single body, the properties of both pendulum and gyroscope mechanics, ensuring effective energy har-vesting in virtually every operational condition, i.e. making it suitable for multidirectional sea wave scatters. The gyropendulum versatility is enhanced during intermediate wave directions, in which both pitch and roll rotation are induced on the floater, prompting both gyroscopic effects, and the elasticity reaction forces on the mechanism. Relaying on such properties, the swinging omnidirectional (SWINGO) device can absorb wave power independently from the excited DoF, and therefore guaranteeing energy extraction independently of the incoming wave direction. System analysis and dynamic properties of the SWINGO system are computed by performing sensitivity studies, through the variation of both geometric properties and control conditions of the gyropendulum mechanism. For these purposes, we apply impedance-matching theory to explore the dynamic characteristics of the system under controlled conditions, and its performance in terms of power, making explicit emphasis in its main characteristics.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0888327023002637-main_compressed (1).pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.69 MB
Formato
Adobe PDF
|
1.69 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2979830