The straightforward, continuous-flow synthesis of cyclopropyl carbaldehydes and ketones has been developed starting from 2-hydroxycyclobutanones and aryl thiols. This acid-catalyzed mediated procedure allows access to the multigram and easily scalable synthesis of cyclopropyl adducts under mild conditions, using reusable Amberlyst-35 as a catalyst. The resins, suitably ground and used for filling steel columns, have been characterized via TGA, ATR, SEM and BET analyses to describe the physical-chemical properties of the packed bed and the continuous-flow system in detail. To highlight the synthetic versatility of the arylthiocyclopropyl carbonyl compounds, a series of selective oxidation reactions have been performed to access sulfoxide and sulfone carbaldehyde cyclopropanes, oxiranes and carboxylic acid derivatives.

Continuous-Flow Synthesis of Arylthio-Cyclopropyl Carbonyl Compounds / Moi, D.; Cabua, M. C.; Velichko, V.; Cocco, A.; Chiappone, A.; Mocci, R.; Porcu, S.; Piras, M.; Bianco, S.; Pesciaioli, F.; Secci, F.. - In: MOLECULES. - ISSN 1420-3049. - 27:22(2022), p. 7943. [10.3390/molecules27227943]

Continuous-Flow Synthesis of Arylthio-Cyclopropyl Carbonyl Compounds

Chiappone A.;Bianco S.;
2022

Abstract

The straightforward, continuous-flow synthesis of cyclopropyl carbaldehydes and ketones has been developed starting from 2-hydroxycyclobutanones and aryl thiols. This acid-catalyzed mediated procedure allows access to the multigram and easily scalable synthesis of cyclopropyl adducts under mild conditions, using reusable Amberlyst-35 as a catalyst. The resins, suitably ground and used for filling steel columns, have been characterized via TGA, ATR, SEM and BET analyses to describe the physical-chemical properties of the packed bed and the continuous-flow system in detail. To highlight the synthetic versatility of the arylthiocyclopropyl carbonyl compounds, a series of selective oxidation reactions have been performed to access sulfoxide and sulfone carbaldehyde cyclopropanes, oxiranes and carboxylic acid derivatives.
2022
File in questo prodotto:
File Dimensione Formato  
molecules-27-07943-v2.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 3.53 MB
Formato Adobe PDF
3.53 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2979827