The integration of electromyography (EMG) and ultrasound imaging has provided important information about the mechanisms of muscle activation and contraction. Unfortunately, conventional bipolar EMG does not allow an accurate assessment of the interplay between the neural drive received by muscles, changes in fascicle length and torque. We aimed to assess the relationship between modulations in tibialis anterior muscle (TA) motor unit (MU) discharge, fascicle length, and dorsiflexion torque using ultrasound-transparent high-density EMG electrodes. EMG and ultrasound images were recorded simultaneously from TA using a 32-electrode silicon matrix while performing isometric dorsiflexion contractions at two ankle joint positions (0 degrees or 30 degrees plantar flexion) and torques (20% or 40% of maximum). EMG signals were decomposed into MUs and changes in fascicle length were assessed with a fascicle-tracking algorithm. MU firings were converted into a cumulative spike train (CST) that was cross-correlated with torque (CST-torque) and fascicle length (CST-length). High cross-correlations were found for CST-length (0.60, range: 0.31-0.85) and CST-torque (0.71, range: 0.31-0.88). Cross-correlation delays revealed that the delay between CST-fascicle length (-75 ms) was smaller than CST-torque (-150 ms, P < 0.001). These delays affected MU recruitment and de-recruitment thresholds since the fascicle length at which MUs were recruited and de-recruited was similar but MU recruitment-de-recruitment torque varied. This study demonstrates that changes in TA fascicle length are related to modulations in MU firing and dorsiflexion torque. These relationships allow assessment of the interplay between neural drive, muscle contraction and torque, enabling the time required to convert neural activity into movement to be quantified. NEW & NOTEWORTHY By employing ultrasound-transparent high-density EMG electrodes, we show that modulations in tibialis anterior muscle motor unit discharge rate were related to both changes in fascicle length and resultant torque. These relationships permitted the quantification of the relative delays between fluctuations in neural drive, muscle contraction, and transfer of torque via the tendon during sustained isometric dorsiflexion contractions, providing information on the conversion of neural activity into muscle force during a contraction.

Modulations in motor unit discharge are related to changes in fascicle length during isometric contractions / Martinez-Valdes, E; Negro, F; Botter, A; Pincheira, Pa; Cerone, Gl; Falla, D; Lichtwark, Ga; Cresswell, Ag. - In: JOURNAL OF APPLIED PHYSIOLOGY. - ISSN 8750-7587. - STAMPA. - 133:5(2022), pp. 1136-1148. [10.1152/japplphysiol.00758.2021]

Modulations in motor unit discharge are related to changes in fascicle length during isometric contractions

Botter, A;Cerone, GL;
2022

Abstract

The integration of electromyography (EMG) and ultrasound imaging has provided important information about the mechanisms of muscle activation and contraction. Unfortunately, conventional bipolar EMG does not allow an accurate assessment of the interplay between the neural drive received by muscles, changes in fascicle length and torque. We aimed to assess the relationship between modulations in tibialis anterior muscle (TA) motor unit (MU) discharge, fascicle length, and dorsiflexion torque using ultrasound-transparent high-density EMG electrodes. EMG and ultrasound images were recorded simultaneously from TA using a 32-electrode silicon matrix while performing isometric dorsiflexion contractions at two ankle joint positions (0 degrees or 30 degrees plantar flexion) and torques (20% or 40% of maximum). EMG signals were decomposed into MUs and changes in fascicle length were assessed with a fascicle-tracking algorithm. MU firings were converted into a cumulative spike train (CST) that was cross-correlated with torque (CST-torque) and fascicle length (CST-length). High cross-correlations were found for CST-length (0.60, range: 0.31-0.85) and CST-torque (0.71, range: 0.31-0.88). Cross-correlation delays revealed that the delay between CST-fascicle length (-75 ms) was smaller than CST-torque (-150 ms, P < 0.001). These delays affected MU recruitment and de-recruitment thresholds since the fascicle length at which MUs were recruited and de-recruited was similar but MU recruitment-de-recruitment torque varied. This study demonstrates that changes in TA fascicle length are related to modulations in MU firing and dorsiflexion torque. These relationships allow assessment of the interplay between neural drive, muscle contraction and torque, enabling the time required to convert neural activity into movement to be quantified. NEW & NOTEWORTHY By employing ultrasound-transparent high-density EMG electrodes, we show that modulations in tibialis anterior muscle motor unit discharge rate were related to both changes in fascicle length and resultant torque. These relationships permitted the quantification of the relative delays between fluctuations in neural drive, muscle contraction, and transfer of torque via the tendon during sustained isometric dorsiflexion contractions, providing information on the conversion of neural activity into muscle force during a contraction.
File in questo prodotto:
File Dimensione Formato  
japplphysiol.00758.2021.pdf

accesso aperto

Descrizione: Articolo Principale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 2.64 MB
Formato Adobe PDF
2.64 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2979685