Combination of several anticancer treatments has typically been presumed to have enhanced drug activity. Motivated by a real clinical trial, this paper considers phase I-II dose finding designs for dual-agent combinations, where one main objective is to characterize both the toxicity and efficacy profiles. We propose a two-stage Bayesian adaptive design that accommodates a change of patient population in-between. In stage I, we estimate a maximum tolerated dose combination using the escalation with overdose control (EWOC) principle. This is followed by a stage II, conducted in a new yet relevant patient population, to find the most efficacious dose combination. We implement a robust Bayesian hierarchical random-effects model to allow sharing of information on the efficacy across stages, assuming that the related parameters are either exchangeable or nonexchangeable. Under the assumption of exchangeability, a random-effects distribution is specified for the main effects parameters to capture uncertainty about the between-stage differences. The inclusion of nonexchangeability assumption further enables that the stage-specific efficacy parameters have their own priors. The proposed methodology is assessed with an extensive simulation study. Our results suggest a general improvement of the operating characteristics for the efficacy assessment, under a conservative assumption about the exchangeability of the parameters a priori.
A Bayesian adaptive design for dual-agent phase I-II oncology trials integrating efficacy data across stages / Jiménez, José L; Zheng, Haiyan. - In: BIOMETRICAL JOURNAL. - ISSN 0323-3847. - (2023). [10.1002/bimj.202200288]
A Bayesian adaptive design for dual-agent phase I-II oncology trials integrating efficacy data across stages
Jiménez, José L;
2023
Abstract
Combination of several anticancer treatments has typically been presumed to have enhanced drug activity. Motivated by a real clinical trial, this paper considers phase I-II dose finding designs for dual-agent combinations, where one main objective is to characterize both the toxicity and efficacy profiles. We propose a two-stage Bayesian adaptive design that accommodates a change of patient population in-between. In stage I, we estimate a maximum tolerated dose combination using the escalation with overdose control (EWOC) principle. This is followed by a stage II, conducted in a new yet relevant patient population, to find the most efficacious dose combination. We implement a robust Bayesian hierarchical random-effects model to allow sharing of information on the efficacy across stages, assuming that the related parameters are either exchangeable or nonexchangeable. Under the assumption of exchangeability, a random-effects distribution is specified for the main effects parameters to capture uncertainty about the between-stage differences. The inclusion of nonexchangeability assumption further enables that the stage-specific efficacy parameters have their own priors. The proposed methodology is assessed with an extensive simulation study. Our results suggest a general improvement of the operating characteristics for the efficacy assessment, under a conservative assumption about the exchangeability of the parameters a priori.File | Dimensione | Formato | |
---|---|---|---|
Jimenez and Zheng (2023).pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
2.69 MB
Formato
Adobe PDF
|
2.69 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2978939