Time Distribution Networks (TDNs) evolve as new technologies occur to ensure more accurate, reliable, and secure timing information. These networks typically exploit several distributed time servers, organized in a master-slave architecture, that communicate via dedicated timing protocols. From the security perspective, timing data must be protected since its modification or filtering can lead to grave consequences in different time-based contexts, such as health, energy, finance, or transportation. Thus, adequate countermeasures must be employed in all the stages and systems handling timing data from its calculation until it reaches the final users. We consider a TDN offering highly accurate (nanosecond level) time synchronization through specific time unit devices that exploit terrestrial atomic or rubidium clocks and Global Navigation Satellite Systems (GNSS) receivers. Such devices are appealing targets for attackers, who might exploit various attack vectors to compromise their functionality. We individuate three possible software integrity attacks against time devices, and we propose a solution to counter them by exploiting the cryptographic Trusted Platform Module (TPM), defined and supported by the Trusted Computing Group. We used remote attestation software for cloud environments, namely the Keylime framework, to verify (periodically) the software daemons running on the time devices (or their configuration) from a trusted node. Experiments performed on a dedicated testbed set up in the ROOT project with customized time unit devices from Seven Solutions (currently Orolia Spain) allow us to demonstrate that exploiting TPMs and remote attestation in the TDNs is not only helpful but is fundamental for discovering some attacks that would remain otherwise undetected. Our work helps thus TDN operators build more robust, accurate, and secure time synchronization services.

Mitigating Software Integrity Attacks with Trusted Computing in a Time Distribution Network / Berbecaru, DIANA GRATIELA; Sisinni, Silvia; Lioy, Antonio; Rat, Benoit; Margaria, Davide; Vesco, ANDREA GUIDO ANTONIO. - In: IEEE ACCESS. - ISSN 2169-3536. - 11:(2023), pp. 50510-50527. [10.1109/ACCESS.2023.3276476]

Mitigating Software Integrity Attacks with Trusted Computing in a Time Distribution Network

Diana Gratiela Berbecaru;Silvia Sisinni;Antonio Lioy;Davide Margaria;Andrea Vesco
2023

Abstract

Time Distribution Networks (TDNs) evolve as new technologies occur to ensure more accurate, reliable, and secure timing information. These networks typically exploit several distributed time servers, organized in a master-slave architecture, that communicate via dedicated timing protocols. From the security perspective, timing data must be protected since its modification or filtering can lead to grave consequences in different time-based contexts, such as health, energy, finance, or transportation. Thus, adequate countermeasures must be employed in all the stages and systems handling timing data from its calculation until it reaches the final users. We consider a TDN offering highly accurate (nanosecond level) time synchronization through specific time unit devices that exploit terrestrial atomic or rubidium clocks and Global Navigation Satellite Systems (GNSS) receivers. Such devices are appealing targets for attackers, who might exploit various attack vectors to compromise their functionality. We individuate three possible software integrity attacks against time devices, and we propose a solution to counter them by exploiting the cryptographic Trusted Platform Module (TPM), defined and supported by the Trusted Computing Group. We used remote attestation software for cloud environments, namely the Keylime framework, to verify (periodically) the software daemons running on the time devices (or their configuration) from a trusted node. Experiments performed on a dedicated testbed set up in the ROOT project with customized time unit devices from Seven Solutions (currently Orolia Spain) allow us to demonstrate that exploiting TPMs and remote attestation in the TDNs is not only helpful but is fundamental for discovering some attacks that would remain otherwise undetected. Our work helps thus TDN operators build more robust, accurate, and secure time synchronization services.
2023
File in questo prodotto:
File Dimensione Formato  
Mitigating_Software_Integrity_Attacks_With_Trusted_Computing_in_a_Time_Distribution_Network.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 2.42 MB
Formato Adobe PDF
2.42 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2978524